Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; Δ [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2020
Inflammatory bowel diseases (IBDs) are chronic intestinal diseases, frequently associated with comorbid psychological and cognitive deficits. These neuropsychiatric effects include anxiety, depression, and memory impairments that can be seen both during active disease and following remission and are more frequently seen in pediatric patients. The mechanism(s) through which these extraintestinal deficits develop remain unknown, and the study of these phenomenon is hampered by a lack of murine pediatric IBD models.
View Article and Find Full Text PDFBackground: Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated.
Aims: To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters.
Clinical immunogenetics laboratories performing routine sequencing of human leukocyte antigen (HLA) genes in support of hematopoietic cell transplantation are motivated to upgrade to next-generation sequencing (NGS) technology by its potential for cost savings as well as testing accuracy and flexibility. While NGS machines are available and simple to operate, there are few systems available that provide comprehensive sample preparation and data analysis workflows to complete the process. We report on the development and testing of the Integrated Genotyping System (IGS), which has been designed to specifically address the challenges associated with the adoption of NGS in clinical laboratories.
View Article and Find Full Text PDF