Publications by authors named "Carly Guiltinan"

Purpose: Here we explored poly(ethylene glycol) (PEG) bioengineered hydrogels for bovine preantral follicle culture with or without ovarian cell co-culture and examined the potential for differentiation of bovine embryonic stem cells (bESCs) towards gonadal somatic cells to develop a system more similar to the ovarian microenvironment.

Methods: Bovine preantral follicles were first cultured in two-dimensional (2D) control or within PEG hydrogels (3D) and then co-cultured within PEG hydrogels with bovine ovarian cells (BOCs) to determine growth and viability. Finally, we tested conditions to drive differentiation of bESCs towards the intermediate mesoderm and bipotential gonad fate.

View Article and Find Full Text PDF

Pluripotent stem cells (PSC) can be stabilized in vitro from pre-implantation stage embryos (embryonic stem cells, ESC) or by reprogramming adult somatic cells (induced pluripotent stem cells, iPSC). The last decade has seen significant advances in the livestock PSC field, particularly the development of robust methods for long-term culture of PSC from several livestock species. Along with this, considerable progress has been made in understanding the states of cellular pluripotency and what they mean for cell differentiation capacity, and significant efforts are ongoing to dissect the critical signaling pathways required for the maintenance of PSC in different species and distinct states of pluripotency.

View Article and Find Full Text PDF

Bovine embryonic stem cells (bESCs) extend the lifespan of the transient pluripotent bovine inner cell mass in vitro. After years of research, derivation of stable bESCs was only recently reported. Although successful, bESC culture relies on complex culture conditions that require a custom-made base medium and mouse embryonic fibroblasts (MEF) feeders, limiting the widespread use of bESCs.

View Article and Find Full Text PDF

Background: Dietary calcium and phosphorus are required for bone and muscle development. Deficiencies of these macrominerals reduce bone mineral and muscle accretion potentially via alterations of mesenchymal stem cell (MSC) and satellite cell (SC) activities.

Objectives: With increasing interest in the role of early-life events on lifetime health outcomes, we aimed to elucidate the impact of dietary calcium and phosphorus, from deficiency through excess, on MSC and SC characteristics during neonatal development.

View Article and Find Full Text PDF