Unlabelled: subsp. (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity.
View Article and Find Full Text PDFGlioblastoma is an aggressive primary tumor of the central nervous system (CNS). Is the most aggressive among infiltrative gliomas arising from the CNS. This tumor has low patient survival rate and several studies aiming at developing new drugs have increased.
View Article and Find Full Text PDFAdenosine A receptor (AR) is the predominant receptor in immune cells, where its activation triggers cAMP-mediated immunosuppressive signaling and the underlying inhibition of T cells activation and T cells-induced effects mediated by cAMP-dependent kinase proteins mechanisms. In this study, were used ADME/Tox, molecular docking and molecular dynamics simulations to investigate selective adenosine AR agonists as potential anti-inflammatory drugs. As a result, we obtained two promising compounds (A and B) that have satisfactory pharmacokinetic and toxicological properties and were able to interact with important residues of the AR binding cavity and during the molecular dynamics simulations were able to keep the enzyme complexed.
View Article and Find Full Text PDFBackground: Drugs used for Parkinson's disease (PD) are mainly responsible for only relieving major symptoms, but may present several side effects that are typical of such pharmacological treatment.
Methods: This study aimed to use in silico methods for drug designing inhibitors of the PD therapeutic target, monoamine oxidase B (MAO-B). Thus, 20 MAO-B inhibitors from the BindingDB database were selected followed by a calculation of their descriptors at DFT B3LYP/6-31G** level of theory.
mBio
February 2020
The filamentous fungus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host.
View Article and Find Full Text PDFIntroduction: The enzyme Glycogen Synthase Kinase 3-β (GSK-3β) is related to neuronal cell degeneration, representing a promising target to treat Alzheimer's Disease (AD).
Methods: In this work, we performed a molecular modeling study of existing GSK-3β inhibitors by means of evaluation of their IC50 values, derivation of a pharmacophore model, molecular docking simulations, ADME/Tox properties predictions, molecular modifications and prediction of synthetic viability.
Results: In this manner, inhibitor 15 (CID 57399952) was elected a template molecule, since it demonstrated to bear relevant structural groups able to interact with GSK-3β, and also presented favorable ADME/Tox predicted properties, except for mutagenicity.
Parkinson's Disease (PD) is the second most common neurodegenerative disease in the elderly population, with a higher prevalence in men, independent of race and social class; it affects approximately 1.5 to 2.0% of the elderly population over 60 years and 4% for those over 80 years of age.
View Article and Find Full Text PDFis the main vector of dengue fever transmission, yellow fever, Zika, and chikungunya in tropical and subtropical regions and it is considered to cause health risks to millions of people in the world. In this study, we search to obtain new molecules with insecticidal potential against via virtual screening. Pyriproxyfen was chosen as a template compound to search molecules in the database Zinc_Natural_Stock (ZNSt) with structural similarity using ROCS (rapid overlay of chemical structures) and EON (electrostatic similarity) software, and in the final search, the top 100 were selected.
View Article and Find Full Text PDFJ Mol Model
August 2018
Receptor-interacting protein kinase 2 (RIPK2) plays an essential role in autoimmune response and is suggested as a target for inflammatory diseases. A pharmacophore model was built from a dataset with ponatinib (template) and 18 RIPK2 inhibitors selected from BindingDB database. The pharmacophore model validation was performed by multiple linear regression (MLR).
View Article and Find Full Text PDFWe have used docking (GLIDE), pharmacophore modeling (Discovery Studio), long trajectory molecular dynamics (Discovery Studio) and ADMET/Tox (QikProp and DEREK) to investigate PAD4 in order to determine potential novel inhibitors and hits. We have carried out virtual screening in the ZINC natural compounds database. Pharmacokinetics and Toxicity of the best hits were assessed using databases implemented in softwares that create models based on chemical structures taking into account consideration about the toxicophoric groups.
View Article and Find Full Text PDFThis work presents a theoretical study of gallium arsenide (GaAs) nanotubes obtained from the (100), (110) and (111) crystal planes of zincblende structure in order to evaluate the electronic properties. The DFT/B3LYP/6-31G method was used to predict structures and stabilities. It was found that nanotubes from the (110) crystal plane tended to be the most stable.
View Article and Find Full Text PDFThe knowledge of the bioactive conformation for an active hit is relevant because of the easier interpretation and the general quality of the recognition models of protein and ligand. With the aim of investigating potential bioactive conformations without previous structural knowledge of the molecular target, we present herewith a 'protocol' that could be used which includes generation of low-energy conformations, calculations of tridimensional descriptors and investigation of structural similarity via principal component analysis. The protocol was used in the search for potential bioactive conformations.
View Article and Find Full Text PDFIn this work we have investigated the effects of vitamins C and E on tumors via the mice xenotransplant model of sarcoma 180 (S180) in vivo. The experimental results suggest that dosages of 100 mg/kg vitamin C and 400 mg/kg vitamin E yields a great inhibitory behavior on tumors.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized microscopically by the presence of amyloid plaques, which are accumulations of beta-amyloid protein inter-neurons, and neurofibrillary tangles formed predominantly by highly phosphorylated forms of the microtubule-associated protein, tau, which form tangled masses that consume neuronal cell body, possibly leading to neuronal dysfunction and ultimately death. p38α mitogen-activated protein kinase (MAPK) has been implicated in both events associated with AD, tau phosphorylation and inflammation. p38α MAPK pathway is activated by a dual phosphorylation at Thr180 and Tyr182 residues.
View Article and Find Full Text PDFPoor pharmacokinetics and toxicity are responsible for most drug candidate failures. In order to attempt to some degree of ADMET (Absorption, Distribution, Metabolism, Excrection and Toxicity) information, in silico predictions arise currently as an interesting alternative to evaluate prototypes during early stages of the drug design processes, especially for anticancer candidates that constitute a class of therapeutic agents that exhibit substantial toxicity. A benzimidazole and a phenylbenzamide derivatives, previously identified as novel anticancer lead compounds able to prevent DNA binding to hnRNP K protein, were evaluated in silico regarding their metabolic profile and toxicity potential in order to give insights to the design of drug candidates with an adequate pharmaceutical profile.
View Article and Find Full Text PDFFuture Med Chem
June 2011
Alzheimer's disease is a complex neurodegenerative disorder of the central nervous system, characterized by amyloid-β deposits, τ-protein aggregation, oxidative stress and reduced levels of acetylcholine in the brain. One pharmacological approach is to restore acetylcholine level by inhibiting acetylcholinesterase (AChE) with reversible inhibitors, such as galanthamine, thus helping to improve the cognitive symptoms of the disease. In order to design new galanthamine derivatives and search for novel, potential inhibitors with improved interactions, as well as a suitable pharmacokinetic profile and low toxicity, several molecular modeling techniques were applied.
View Article and Find Full Text PDFThe aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database.
View Article and Find Full Text PDFJ Mol Graph Model
February 2010
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals.
View Article and Find Full Text PDFPhospholipases A(2) (PLA(2)) are enzymes commonly found in snake venoms from Viperidae and Elaphidae families, which are major components thereof. Many plants are used in traditional medicine as active agents against various effects induced by snakebite. This article presents the PLA(2) BthTX-I structure prediction based on homology modeling.
View Article and Find Full Text PDFJ Phys Chem A
September 2008
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter.
View Article and Find Full Text PDFThe addition of computer-aided drug design (CADD) technologies to the research and drug discovery approaches could lead to a reduction of up to 50% in the cost of drug design. Designing a drug is the process of finding or creating a molecule which has a specific activity on a biological organism. Development and drug discovery is a time-consuming, expensive, and interdisciplinary process whereas scientific advancements during the past two decades have altered the way pharmaceutical research produces new bioactive molecules.
View Article and Find Full Text PDFMonoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson's disease, and neuroprotective drugs.
View Article and Find Full Text PDF