Publications by authors named "Carlsson Georg"

Fabeae legumes such as pea and faba bean form symbiotic nodules with a large diversity of soil Rhizobium leguminosarum symbiovar viciae (Rlv) bacteria. However, bacteria competitive to form root nodules (CFN) are generally not the most efficient to fix dinitrogen, resulting in a decrease in legume crop yields. Here, we investigate differential selection by host plants on the diversity of Rlv.

View Article and Find Full Text PDF

Climate change impacts rainfall patterns which may lead to drought stress in rain-fed agricultural systems. Crops with higher drought tolerance are required on marginal land with low precipitation or on soils with low water retention used for biomass production. It is essential to obtain plant breeding tools, which can identify genotypes with improved drought tolerance and water use efficiency (WUE).

View Article and Find Full Text PDF

Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity.

View Article and Find Full Text PDF

Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of (15)N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against (15)N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e.

View Article and Find Full Text PDF