Publications by authors named "Carlotta Zamparelli"

The Envelope (E) protein of SARS-CoV-2 plays a key role in virus maturation, assembly, and virulence mechanisms. The E protein is characterized by the presence of a PDZ-binding motif (PBM) at its C-terminus that allows it to interact with several PDZ-containing proteins in the intracellular environment. One of the main binding partners of the SARS-CoV-2 E protein is the PDZ2 domain of ZO1, a protein with a crucial role in the formation of epithelial and endothelial tight junctions (TJs).

View Article and Find Full Text PDF

We produced a neuroglobin variant, namely, Ngb CDless, with the excised CDloop- and D-helix, directly joining the C- and E-helices. The CDless variant retained bis-His hexacoordination, and we investigated the role of the CDloop-D-helix unit in controlling the CO binding and structural dynamics by an integrative approach based on X-ray crystallography, rapid mixing, laser flash photolysis, resonance Raman spectroscopy, and molecular dynamics simulations. Rapid mixing and laser flash photolysis showed that ligand affinity was unchanged with respect to the wild-type protein, albeit with increased on and off constants for rate-limiting heme iron hexacoordination by the distal His64.

View Article and Find Full Text PDF

Unlabelled: Cancer cells reprogramme one-carbon metabolism (OCM) to sustain growth and proliferation. Depending on cell demands, serine hydroxymethyltransferase (SHMT) dynamically changes the fluxes of OCM by reversibly converting serine and tetrahydrofolate (THF) into 5,10-methylene-THF and glycine. SHMT is a tetrameric enzyme that mainly exists in three isoforms; two localize in the cytosol (SHMT1/SHMT2α) and one (SHMT2) in the mitochondria.

View Article and Find Full Text PDF

Background: Phosphodiesterases (PDEs) are a superfamily of evolutionary conserved cyclic nucleotides (cAMP/cGMP) hydrolysing enzymes, components of transduction pathways regulating crucial aspects of cell life. PDE5, one of these families, is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Despite its medical relevance, PDE5 macromolecular structure has only been solved for the isolated regulatory and catalytic domains.

View Article and Find Full Text PDF

The dual-specificity activity of the homeodomain interacting protein kinase 2 (HIPK2) is regulated by cis-auto-phosphorylation of tyrosine 361 (Y361) on the activation loop. Inhibition of this process or substitution of Y361 with nonphosphorylatable amino acid residues result in aberrant HIPK2 forms that show altered functionalities, pathological-like cellular relocalization, and accumulation into cytoplasmic aggresomes. Here, we report an in vitro characterization of wild type HIPK2 kinase domain and of two mutants, one at the regulating Y361 (Y361F, mimicking a form of HIPK2 lacking Y361 phosphorylation) and another at the catalytic lysine 228 (K228A, inactivating the enzyme).

View Article and Find Full Text PDF

Unlabelled: We determined the crystal structure of Thr1, the self-standing adenylation domain involved in the nonribosomal-like biosynthesis of free 4-chlorothreonine in Streptomyces sp. OH-5093. Thr1 shows two monomers in the crystallographic asymmetric unit with different relative orientations of the C- and N-terminal subdomains both in the presence of substrates and in the unliganded form.

View Article and Find Full Text PDF

A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4(+) melanoma cell line, but not to a CSPG4(-) breast carcinoma cell line.

View Article and Find Full Text PDF

Background: In Gram-negative bacteria the ZnuABC transporter ensures adequate zinc import in Zn(II)-poor environments, like those encountered by pathogens within the infected host. Recently, the metal-binding protein ZinT was suggested to operate as an accessory component of ZnuABC in periplasmic zinc recruitment. Since ZinT is known to form a ZinT-ZnuA complex in the presence of Zn(II) it was proposed to transfer Zn(II) to ZnuA.

View Article and Find Full Text PDF

Alanine:glyoxylate aminotransferase (AGT) is a pyridoxal-phosphate (PLP)-dependent enzyme. Its deficiency causes the hereditary kidney stone disease primary hyperoxaluria type 1. AGT is a highly stable compact dimer and the first 21 residues of each subunit form an extension which wraps over the surface of the neighboring subunit.

View Article and Find Full Text PDF

DNA-binding proteins from starved cells (Dps) differ in the number and position of charged residues along the "ferritin-like" pores that are used by iron to reach the ferroxidase center and the protein cavity. These differences are shown to affect significantly the electrostatic potential at the pores, which determines the extent of cooperativity in the iron uptake kinetics and thereby the mass distribution of the ferric hydroxide micelles inside the protein cavity. These conclusions are of biotechnological value in the preparation of protein-enclosed nanomaterials and are expected to apply also to ferritins.

View Article and Find Full Text PDF

Sorcin is a penta-EF-hand protein that interacts with intracellular target proteins after Ca(2+) binding. The sarcolemmal Na(+)/Ca(2+) exchanger (NCX1) may be an important sorcin target in cardiac muscle. In this study, RNAi knockdown of sorcin, purified sorcin or sorcin variants was employed in parallel measurements of: (i) NCX activity in isolated rabbit cardiomyocytes using electrophysiological techniques and (ii) sorcin binding to the NCX1 calcium binding domains (CBD1 and (iii) using surface plasmon resonance and gel overlay techniques.

View Article and Find Full Text PDF

Elucidating pore function at the 3-fold channels of 12-subunit, microbial Dps proteins is important in understanding their role in the management of iron/hydrogen peroxide. The Dps pores are called "ferritin-like" because of the structural resemblance to the 3-fold channels of 24-subunit ferritins used for iron entry and exit to and from the protein cage. In ferritins, negatively charged residues lining the pores generate a negative electrostatic gradient that guides iron ions toward the ferroxidase centers for catalysis with oxidant and destined for the mineralization cavity.

View Article and Find Full Text PDF

The penta-EF hand protein sorcin participates in the modulation of Ca2+-induced calcium-release in the heart through the interaction with several Ca2+ channels such as the ryanodine receptor. The modulating activity is impaired in the recently described natural F112L mutant. The F112 residue is located at the end of the D helix next to Asp113, one of the calcium ligands in the EF3 hand endowed with the highest affinity for the metal.

View Article and Find Full Text PDF

Sorcin, a 21.6 kDa two-domain penta-EF-hand (PEF) protein, when activated by Ca(2+) binding, interacts with target proteins in a largely uncharacterized process. The two physiological EF-hands EF3 and EF2 do not belong to a structural pair but are connected by the D helix.

View Article and Find Full Text PDF

Background: Annexin A7 is a Ca2+- and phospholipid-binding protein expressed as a 47 and 51 kDa isoform, which is thought to be involved in membrane fusion processes. Recently the 47 kDa isoform has been identified in erythrocytes where it was proposed to be a key component in the process of the Ca2+-dependent vesicle release, a process with which red blood cells might protect themselves against an attack by for example complement components.

Results: The role of annexin A7 in red blood cells was addressed in erythrocytes from anxA7-/- mice.

View Article and Find Full Text PDF

Sorcin is a typical penta-EF-hand protein that participates in Ca2+-regulated processes by translocating reversibly from cytosol to membranes, where it interacts with different target proteins in different tissues. Binding of two Ca2+/monomer triggers translocation, although EF1, EF2, and EF3 are potentially able to bind calcium at micromolar concentrations. To identify the functional pair, the conserved bidentate -Z glutamate in these EF-hands was mutated to yield E53Q-, E94A-, and E124A-sorcin, respectively.

View Article and Find Full Text PDF

Sorcin is a 21.6 kDa calcium binding protein, expressed in a number of mammalian tissues that belongs to the small, recently identified penta-EF-hand (PEF) family. Like all members of this family, sorcin undergoes a Ca2+-dependent translocation from cytosol to membranes where it binds to target proteins.

View Article and Find Full Text PDF