Publications by authors named "Carlotta Pucci"

Article Synopsis
  • Most anticancer treatments are tested on 2D cultures, which don't accurately mimic tumor behavior and therapy effects on tissues.
  • The study introduces advanced 3D in vitro models using scaffolds that promote glioma cell growth while allowing interaction with healthy brain cells, utilizing superparamagnetic nanoparticles for remote manipulation.
  • This innovative approach allows for versatile coculture systems, supporting realistic brain cancer microenvironments and enhancing our ability to study treatment effects in a more biomimetic context.
View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive brain tumor known for its resistance to standard treatments. Despite surgery being a primary option, it often leads to incomplete removal and high recurrence rates. Photodynamic therapy (PDT) holds promise as an adjunctive treatment, but safety concerns and the need for high-power lasers have limited its widespread use.

View Article and Find Full Text PDF

Brain drug delivery is severely hindered by the presence of the blood-brain barrier (BBB). Its functionality relies on the interactions of the brain endothelial cells with additional cellular constituents, including pericytes, astrocytes, neurons, or microglia. To boost brain drug delivery, nanomedicines have been designed to exploit distinct delivery strategies, including magnetically driven nanocarriers as a form of external physical targeting to the BBB.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth.

View Article and Find Full Text PDF

Piezoelectric stimulation can have a significant impact on different cellular functions with possible applications in several fields, such as regenerative medicine, cancer therapy, and immunoregulation. For example, piezoelectric stimulation has been shown to modulate cytoskeleton variations: the implications of this effect range from the regulation of migration and invasion of cancer cells to the activation of pro- or anti-inflammatory phenotypes in immune cells. In this chapter, we will present different methodologies to evaluate cytoskeleton variations, focusing on modifications on f-/g-actin ratio and on the migration and invasion ability of tumor cells.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a devastating tumor of the central nervous system, currently missing an effective treatment. The therapeutic gold standard consists of surgical resection followed by chemotherapy (usually with temozolomide, TMZ) and/or radiotherapy. TMZ does not, however, provide significant survival benefit after completion of treatment because of development of chemoresistance and of heavy side effects of systemic administration.

View Article and Find Full Text PDF

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field.

View Article and Find Full Text PDF

Upon coming into contact with the biological environment, nanostructures are immediately covered by biomolecules, particularly by proteins forming the so-called "protein corona" (PC). The phenomenon of PC formation has gained great attention in recent years due to its implication in the use of nanostructures in biomedicine. In fact, it has been shown that the formation of the PC can impact the performance of nanostructures by reducing their stability, causing aggregation, increasing their toxicity, and providing unexpected and undesired nanostructure-cell interactions.

View Article and Find Full Text PDF

Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted attention in the biomedical field thanks to their ability to prompt hyperthermia in response to an alternated magnetic field. Hyperthermia is well known for inducing cell death, in particular in tumour cells, which seem to have a higher sensitivity to temperature increases. For this reason, hyperthermia has been recommended as a therapeutic tool against cancer.

View Article and Find Full Text PDF

Angiogenesis plays a fundamental role in tumor development, as it is crucial for tumor progression, metastasis development, and invasion. In this view, anti-angiogenic therapy has received considerable attention in several cancer types in order to inhibit tumor vascularization, and the progress of nanotechnology offers opportunities to target and release anti-angiogenic agents in specific diseased areas. In this work, we showed that the angiogenic behavior of human cerebral microvascular endothelial cells can be inhibited by using nutlin-3a-loaded ApoE-functionalized polymeric piezoelectric nanoparticles, which can remotely respond to ultrasound stimulation.

View Article and Find Full Text PDF

Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, represents the most aggressive primary brain tumor. The complex genetic heterogeneity, the acquired drug resistance, and the presence of the blood-brain barrier (BBB) limit the efficacy of the current therapies, with effectiveness demonstrated only in a small subset of patients. To overcome these issues, here we propose an anticancer approach based on ultrasound-responsive drug-loaded organic piezoelectric nanoparticles.

View Article and Find Full Text PDF

The modeling of the pathological microenvironment of the central nervous system (CNS) represents a disrupting approach for drug screening for advanced therapies against tumors and neuronal disorders. The in vitro investigations of the crossing and diffusion of drugs through the blood-brain barrier (BBB) are still not completely reliable, due to technological limits in the replication of 3D microstructures that can faithfully mimic the in vivo scenario. Here, an innovative 1:1 scale 3D-printed realistic biohybrid model of the brain tumor microenvironment, with both luminal and parenchyma compartments, is presented.

View Article and Find Full Text PDF

Owing to the self-renewing reactive oxygen species scavenger capability of cerium oxide nanoparticles (nanoceria), we tested in vivo radioprotective effects on stem cells and tissue regeneration using low-dose irradiated planarians as model system. We treated planarians with nanoceria or gum Arabic, as control, and we analyzed the expression of stem cell molecular markers and tissue regeneration capability, as well as cell death and DNA damage in non-irradiated and in low-dose irradiated animals. Our findings show that nanoceria increase the number of stem cells and tissue regenerative capability, and reduce cell death and DNA damage after low-dose irradiation, suggesting a protective role on stem cells.

View Article and Find Full Text PDF

Oxidative stress occurs when physiological antioxidant systems do not manage to counteract the excessive intracellular production of reactive oxygen species (ROS), which accumulate leading to irreversible oxidation of DNA and other biomacromolecules, and thus to the onset of pathological conditions. Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disease characterized by autosomal recessive mutations in the sacsin gene (). It has been demonstrated that cells of ARSACS patients show bioenergetic and mitochondrial impairment, denoted by reduced respiratory chain activities and ATP synthesis.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells.

View Article and Find Full Text PDF

Many central nervous system (CNS) diseases are still incurable and only symptomatic treatments are available. Oxidative stress is suggested to be a common hallmark, being able to cause and exacerbate the neuronal cell dysfunctions at the basis of these pathologies, such as mitochondrial impairments, accumulation of misfolded proteins, cell membrane damages, and apoptosis induction. Several antioxidant compounds are tested as potential countermeasures for CNS disorders, but their efficacy is often hindered by the loss of antioxidant properties due to enzymatic degradation, low bioavailability, poor water solubility, and insufficient blood-brain barrier crossing efficiency.

View Article and Find Full Text PDF

Every year, cancer is responsible for millions of deaths worldwide and, even though much progress has been achieved in medicine, there are still many issues that must be addressed in order to improve cancer therapy. For this reason, oncological research is putting a lot of effort towards finding new and efficient therapies which can alleviate critical side effects caused by conventional treatments. Different technologies are currently under evaluation in clinical trials or have been already introduced into clinical practice.

View Article and Find Full Text PDF

Cancer accounts for millions of deaths every year and, due to the increase and aging of the world population, the number of new diagnosed cases is continuously rising. Although many progresses in early diagnosis and innovative therapeutic protocols have been already set in clinical practice, still a lot of critical aspects need to be addressed in order to efficiently treat cancer and to reduce several drawbacks caused by conventional therapies. Nanomedicine has emerged as a very promising approach to support both early diagnosis and effective therapy of tumors, and a plethora of different inorganic and organic multifunctional nanomaterials have been designed to meet the constant demand for new solutions in cancer treatment.

View Article and Find Full Text PDF

The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity.

View Article and Find Full Text PDF