Publications by authors named "Carlotta Costa"

Article Synopsis
  • ALK tyrosine kinase inhibitors (TKIs) are effective against certain tumors but resistance limits their long-term success, with mechanisms of this resistance not well understood in anaplastic large cell lymphoma (ALCL).
  • The study reveals that a survival pathway activated by the tumor microenvironment supports PI3K-γ signaling through CCR7, leading to increased resistance in ALCL cells treated with ALK TKIs.
  • Combining ALK TKI treatment with inhibitors targeting PI3Kγ or CCR7 can reduce resistance and improve outcomes for patients with ALCL, as shown in experiments with cell lines and mouse models.
View Article and Find Full Text PDF
Article Synopsis
  • Triple negative breast cancer (TNBC) is responsible for over 30% of breast cancer deaths, yet it represents only 10-15% of all cases, highlighting a significant challenge in treatment.
  • Research using CRISPR/Cas9 screening identified that TNBC cells are particularly sensitive to the depletion of UBA1, a ubiquitin-like modifier activating enzyme.
  • The UBA1 inhibitor TAK-243 induces severe ER stress and cell death in TNBC cells, particularly those with high c-MYC levels, showing promise for shrinking tumors and reducing metastasis in both lab models and patient-derived xenografts.
View Article and Find Full Text PDF

SHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression.

View Article and Find Full Text PDF

The combination of CDK4/6 inhibitors with antiestrogen therapies significantly improves clinical outcomes in ER-positive advanced breast cancer. To identify mechanisms of acquired resistance, we analyzed serial biopsies and rapid autopsies from patients treated with the combination of the CDK4/6 inhibitor ribociclib with letrozole. This study revealed that some resistant tumors acquired RB loss, whereas other tumors lost PTEN expression at the time of progression.

View Article and Find Full Text PDF

Purpose: Effective targeted therapies are lacking for refractory and relapsed T-cell acute lymphoblastic leukemia (T-ALL). Suppression of the NOTCH pathway using gamma-secretase inhibitors (GSI) is toxic and clinically not effective. The goal of this study was to identify alternative therapeutic strategies for T-ALL.

View Article and Find Full Text PDF

() amplification is a driving oncogenic event in breast cancer. Clinical trials have consistently shown the benefit of HER2 inhibitors (HER2i) in treating patients with both local and advanced HER2+ breast cancer. Despite this benefit, their efficacy as single agents is limited, unlike the robust responses to other receptor tyrosine kinase inhibitors like EGFR inhibitors in -mutant lung cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Breast and gynecologic cancers with specific mutations did not significantly respond to the drug AZD5363, which is supposed to inhibit AKT activity.
  • This finding contradicts earlier studies that suggested the drug was effective for these types of cancers.
  • The results highlight the importance of finding the right predictive biomarkers to better select patients who are most likely to benefit from the treatment.
View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is an often-fatal neuroendocrine carcinoma usually presenting as extensive disease, carrying a 3% 5-year survival. Despite notable advances in SCLC genomics, new therapies remain elusive, largely due to a lack of druggable targets. We used a high-throughput drug screen to identify a venetoclax-sensitive SCLC subpopulation and validated the findings with multiple patient-derived xenografts of SCLC.

View Article and Find Full Text PDF
Article Synopsis
  • Targeted therapies are effective for systemic cancer treatment but struggle with brain metastases, leading to poor control over these lesions.
  • In breast cancer models, even with drug accumulation in brain metastases, they can bypass the effects of PI3K inhibitors, partly due to increased HER3 expression and activation.
  • Blocking HER3 can sensitize resistant brain metastases to PI3K inhibitors, resulting in reduced tumor growth and improved survival in experimental models, suggesting new treatment strategies for certain breast cancer patients.
View Article and Find Full Text PDF

Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199.

View Article and Find Full Text PDF

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFR(T790M) gatekeeper mutation can occur either by selection of pre-existing EGFR(T790M)-positive clones or via genetic evolution of initially EGFR(T790M)-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFR(T790M); treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity.

View Article and Find Full Text PDF

Non-small cell lung cancer patients carrying oncogenic EGFR mutations initially respond to EGFR-targeted therapy, but later elicit minimal response due to dose-limiting toxicities and acquired resistance. EGF816 is a novel, irreversible mutant-selective EGFR inhibitor that specifically targets EGFR-activating mutations arising de novo and upon resistance acquisition, while sparing wild-type (WT) EGFR. EGF816 potently inhibited the most common EGFR mutations L858R, Ex19del, and T790M in vitro, which translated into strong tumor regressions in vivo in several patient-derived xenograft models.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown.

View Article and Find Full Text PDF

BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes.

View Article and Find Full Text PDF

BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation.

View Article and Find Full Text PDF

A growing number of mutations in PIK3R1, the gene that encodes for the p85α regulatory subunit of PI3K, have been recently identified. In this issue of Cancer Cell, Cheung and colleagues describe two neomorphic PIK3R1 mutants prevalent in endometrial and colon cancer that induce transformation via activation of PI3K-independent pathways.

View Article and Find Full Text PDF

Activation of the phosphoinositide 3-kinase (PI3K) pathway occurs frequently in breast cancer. However, clinical results of single-agent PI3K inhibitors have been modest to date. A combinatorial drug screen on multiple PIK3CA mutant cancers with decreased sensitivity to PI3K inhibitors revealed that combined CDK 4/6-PI3K inhibition synergistically reduces cell viability.

View Article and Find Full Text PDF

Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium.

View Article and Find Full Text PDF

The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials.

View Article and Find Full Text PDF

Colorectal cancers harboring KRAS or BRAF mutations are refractory to current targeted therapies. Using data from a high-throughput drug screen, we have developed a novel therapeutic strategy that targets the apoptotic machinery using the BCL-2 family inhibitor ABT-263 (navitoclax) in combination with a TORC1/2 inhibitor, AZD8055. This combination leads to efficient apoptosis specifically in KRAS- and BRAF-mutant but not wild-type (WT) colorectal cancer cells.

View Article and Find Full Text PDF

The treatment of advanced cancer has undergone a dramatic change over the past 5 years. Laboratory findings have led to the development of newer treatments, often termed "targeted therapies," which are significantly different from traditional chemotherapies in that they aim to disrupt critical processes needed specifically for a cancer cell's growth and survival, therefore, eliminating some of the general toxicities of chemotherapies. Cancers with specific genetic abnormalities, for instance epidermal growth factor receptor (EGFR) mutant lung cancers and HER2 amplified breast cancers, are often sensitive to these new targeted therapies that can specifically inhibit the function of EGFR or HER2.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)/AKT and RAF/MEK/ERK signaling pathways are activated in a wide range of human cancers. In many cases, concomitant inhibition of both pathways is necessary to block proliferation and induce cell death and tumor shrinkage. Several feedback systems have been described in which inhibition of one intracellular pathway leads to activation of a parallel signaling pathway, thereby decreasing the effectiveness of single-agent targeted therapies.

View Article and Find Full Text PDF

The rapid and accurate response of leukocytes to environmental cues is critical for a proper inflammatory reaction to foreign particles or invading microbes. In the last decade, the signal transduction enzyme phosphoinositide 3-kinase γ (PI3Kγ) has emerged as a critical modulator of leukocyte responses, with its effects spanning from recruitment to the site of inflammation to the production of reactive oxygen species. These findings initially obtained from genetically modified mice have led to the development of experimental anti-inflammatory inhibitors with reasonable selectivity and specificity.

View Article and Find Full Text PDF

In phagocytes, GTPases of the Rac family control crucial antimicrobial functions. The RacGAP ArhGAP15 negatively modulates Rac activity in leukocytes, but its in vivo role in innate immunity remains largely unknown. Here we show that neutrophils and macrophages derived from mice lacking ArhGAP15 presented higher Rac activity but distinct phenotypes.

View Article and Find Full Text PDF

Rationale: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis.

Objectives: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration.

Methods: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration.

View Article and Find Full Text PDF