We aimed to determine the mechanism of epithelial-mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked repression and acquisition of stemness with the EMT factor, .
View Article and Find Full Text PDFMesoporous silica nanoparticles (MSNs) are delivery vehicles that can carry cargo molecules and release them on command. The particles used in the applications reported in this Account are around 100 nm in diameter (about the size of a virus) and contain 2.5 nm tubular pores with a total volume of about 1 cm/g.
View Article and Find Full Text PDFTwist1 is a basic helix-loop-helix transcription factor that plays a key role in embryonic development, and its expression is down-regulated in adult cells. However, Twist1 is highly expressed during cancer development, conferring a proliferative, migratory, and invasive phenotype to malignant cells. Twist1 expression can be regulated post-translationally by phosphorylation or ubiquitination events.
View Article and Find Full Text PDFBreast and ovarian cancer are the leading cause of cancer-related deaths in women in the United States with over 232,000 new Breast Cancer (BC) diagnoses expected in 2018 and almost 40,000 deaths and an estimated 239,000 new ovarian cancer (OC) cases and 152,000 deaths worldwide annually. OC is the most lethal gynecologic malignancy. This high mortality rate is due to tumor recurrence and metastasis, primarily caused by chemoresistant cancer stem-like cells (CSCs).
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a critical process involved in cancer metastasis and chemoresistance. Twist1 is a key EMT-inducing transcription factor, which is upregulated in multiple types of cancers and has been shown to promote tumor cell invasiveness and support tumor progression. Conversely, p53 is a tumor suppressor gene that is frequently mutated in cancers.
View Article and Find Full Text PDFA growing body of evidence has demonstrated the promising anti-tumor effects of resveratrol in ovarian cancer cells, including its inhibitory effects on STAT3 activation. Nonetheless, the low bioavailability of resveratrol has reduced its attractiveness as a potential anti-cancer treatment. In contrast, pterostilbene, a stilbenoid and resveratrol analog, has demonstrated superior bioavailability, while possessing significant antitumor activity in multiple solid tumors.
View Article and Find Full Text PDFTWIST protein is critical to development and is activated in many cancers. TWIST regulates epithelial-mesenchymal transition, and is linked to angiogenesis, metastasis, cancer stem cell phenotype, and drug resistance. The majority of epithelial ovarian cancer (EOC) patients with metastatic disease respond well to first-line chemotherapy but most relapse with disease that is both metastatic and drug resistant, leading to a five-year survival rate under 20%.
View Article and Find Full Text PDFSaethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls.
View Article and Find Full Text PDFEndometrial cancer is the most common gynecologic cancer in the United States and its incidence and mortality has been rising over the past decade. Few treatment options are available for patients with advanced and recurring endometrial cancers. Novel therapies, which are frequently toxic, are difficult to establish in this patient population which tends to be older and plagued by comorbidities such as diabetes mellitus and hypertension.
View Article and Find Full Text PDFBackground: Most cancer deaths result from tumor cells that have metastasized beyond their tissue of origin, or have developed drug resistance. Across many cancer types, patients with advanced stage disease would benefit from a novel therapy preventing or reversing these changes. To this end, we have investigated the unique WR domain of the transcription factor TWIST1, which has been shown to play a role in driving metastasis and drug resistance.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the most deadly gynaecologic malignancy due to late onset of symptoms and propensity towards drug resistance. Epithelial-mesenchymal transition (EMT) has been linked to the development of chemoresistance in other cancers, yet little is known regarding its role in EOC. In this study, we sought to determine the role of the transcription factor TWIST1, a master regulator of EMT, on cisplatin resistance in an EOC model.
View Article and Find Full Text PDFRecent studies suggest that leukemia stem cells (LSCs) play a critical role in the initiation, propagation, and relapse of leukemia. Herein we show that (-)-15-methylene-eburnamonine, a derivative of the alkaloid (-)-eburnamonine, is cytotoxic against acute and chronic lymphocytic leukemias (ALL and CLL) and acute myelogenous leukemia (AML). The agent also decreases primary LSC frequency in vitro.
View Article and Find Full Text PDFTwist-1 encodes a basic helix-loop-helix transcription factor, known to contribute to mesodermal and skeletal tissue development. We have reported previously that Twist-1 maintains multipotent human bone marrow-derived mesenchymal stem/stromal cells (BMSC) in an immature state, enhances their life-span, and influences cell fate determination. In this study, human BMSC engineered to express high levels of Twist-1 were found to express elevated levels of the chemokine, CXCL12.
View Article and Find Full Text PDFUnlabelled: Growth and progression of solid tumors depend on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling.
View Article and Find Full Text PDFUnlabelled: Jumonji domain-containing protein 3 (JMJD3/KDM6B) demethylates lysine 27 on histone H3 (H3K27me3), a repressive epigenetic mark controlling chromatin organization and cellular senescence. To better understand the functional consequences of JMJD3 its expression was investigated in brain tumor cells. Querying patient expression profile databases confirmed JMJD3 overexpression in high-grade glioma.
View Article and Find Full Text PDFMaturitas
September 2014
Breast cancer is the leading cause of cancer-related deaths in the United States with over 232,000 new diagnoses expected in 2014 and almost 40,000 deaths. While treatment of primary breast cancer is often well-managed with surgery and radiation, metastatic breast cancer (MBC) that has spread to the brain, bones, liver, and lungs is often incurable. One of the major challenges in the treatment of breast cancer is the presence of a subpopulation of cancer cells that are chemoresistant and metastatic.
View Article and Find Full Text PDFBone disease is the leading cause of morbidity associated with multiple myeloma (MM). Lytic bone lesions have been detected in 90% of patients diagnosed with MM and present a great therapeutic challenge. After the removal of the tumor burden, the bone lesions persist and the bone remodeling homeostasis is not restored even in patients in clinical remission.
View Article and Find Full Text PDFBackground: Metastasis is the primary cause of death for cancer patients. TWIST1, an evolutionarily conserved basic helix-loop-helix (bHLH) transcription factor, is a strong promoter of metastatic spread and its expression is elevated in many advanced human carcinomas. However, the molecular events triggered by TWIST1 to motivate dissemination of cancer cells are largely unknown.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM) is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts.
View Article and Find Full Text PDFMetastasis to multiple organs is the primary cause of mortality in breast cancer patients. The poor prognosis for patients with metastatic breast cancer and toxic side effects of currently available treatments necessitate the development of effective tumor-selective therapies. Neural stem cells (NSCs) possess inherent tumor tropic properties that enable them to overcome many obstacles of drug delivery that limit effective chemotherapy strategies for breast cancer.
View Article and Find Full Text PDFMultiple myeloma (MM) is an incurable plasma cell malignancy where nearly all patients succumb to a relapse. The current preclinical models of MM target the plasma cells, constituting the bulk of the tumor, leaving the cancer stem cells to trigger a relapse. Utilizing a three-dimensional tissue culture system where cells were grown in extracellular matrix designed to reconstruct human bone marrow, we tested the anti-multiple myeloma cancer stem cell (MM-CSC) potential of two natural product inhibitors of nuclear factor κB (NFκB).
View Article and Find Full Text PDFBackground: Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT) is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro.
View Article and Find Full Text PDF