The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from and , showing at 10 µM a ca.
View Article and Find Full Text PDFDesigning therapeutic devices capable of manipulating glioblastoma initiating cells (GICs) is critical to stop tumor recurrence and its associated mortality. Previous studies have indicated that bone morphogenetic protein-7 (BMP-7) acts as an endogenous suppressor of GICs, and thus, it could become a treatment for this cancer. In this work, we engineer an implantable microsphere system optimized for the controlled release of BMP-7 as a bioinspired therapeutic device against GICs.
View Article and Find Full Text PDF