We report the first real-time imaging of individualized boron nitride nanotubes (BNNTs) via stabilization with a rhodamine surfactant and fluorescence microscopy. We study the rotational and translational diffusion and find them to agree with predictions based on a confined, high-aspect-ratio rigid rod undergoing Brownian motion. We find that the behavior of BNNTs parallels that of individualized carbon nanotubes (CNTs), indicating that BNNTs could also be used as model rigid rods to study soft matter systems, while avoiding the experimental disadvantages of CNTs due to their strong light absorption.
View Article and Find Full Text PDFThe functionalization of nanomaterials has long been studied as a way to manipulate and tailor their properties to a desired application. Of the various methods available, the Billups-Birch reduction has become an important and widely used reaction for the functionalization of carbon nanotubes (CNTs) and, more recently, boron nitride nanotubes. However, an easily overlooked source of error when using highly reductive conditions is the utilization of poly(tetrafluoroethylene) (PTFE) stir bars.
View Article and Find Full Text PDFBoron nitride nanotubes (BNNTs) belong to a novel class of material with useful thermal, electronic and optical properties. However, the study and the development of applications of this material requires the formation of stable dispersions of individual BNNTs in water. Here we address the dispersion of BNNT material in water using surfactants with varying properties.
View Article and Find Full Text PDFThe transformation from semiconducting to metallic phase, accompanied by a structural transition in 2D transition metal dichalcogenides has attracted the attention of the researchers worldwide. The unconventional structural transformation of fluorinated WS (FWS ) into the 1T phase is described. The energy difference between the two phases debugs this transition, as fluorination enhances the stability of 1T FWS and makes it energetically favorable at higher F concentration.
View Article and Find Full Text PDFWith the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation.
View Article and Find Full Text PDFGraphenide solutions in NMP have been prepared by dispersing potassium intercalated graphite with the assistance of 18-crown-6. The highest graphenide solubility achieved is 1.5 mg mL.
View Article and Find Full Text PDFThere is a special interest in having pharmaceutical active ingredients in the amorphous state due to their increased solubility and therefore, higher bioavailability. Nevertheless, not all of them present stable amorphous phases. In particular, paracetamol is an active ingredient widely known for its instability when prepared in the amorphous state.
View Article and Find Full Text PDFAdvances in medical and assistive technology have increased the likelihood of survival following a traumatic brain injury (TBI). Consequently, families frequently must provide care to individuals with TBI. Because they are rarely prepared for the associated demanding medical needs and financial burden, family caregivers are at risk for physical and emotional problems, which can negatively influence their individual and family functioning.
View Article and Find Full Text PDF