Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 () gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD.
View Article and Find Full Text PDFFamilial Alzheimer's disease (FAD) is a chronic neurological condition that progresses over time. Currently, lacking a viable treatment, the use of multitarget medication combinations has generated interest as a potential FAD therapy approach. In this study, we examined the effects of 4-phenylbutyric acid (4-PBA) and methylene blue (MB) either separately or in combination on PSEN1 I416T cholinergic-like neuron cells (ChLNs), which serve as a model for FAD.
View Article and Find Full Text PDFFamilial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aβ), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is the second most common neurodegenerative disease following Alzheimer's disease. Nearly 30 causative genes have been identified for PD and related disorders. However, most of these genes were identified in European-derived families, and little is known about their role in Latin American populations.
View Article and Find Full Text PDFParkinson's disease (PD) is a complex multifactorial progressive neurodegenerative disease characterized by locomotor alteration due to the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). Mounting evidence shows that human LRRK2 (hLRRK2) kinase activity is involved in oxidative stress (OS)-induced neurodegeneration, suggesting LRRK2 inhibition as a potential therapeutic target. We report that the hLRRK2 inhibitor PF-06447475 (PF-475) prolonged lifespan, increased locomotor activity, maintained DAergic neuronal integrity, and reduced lipid peroxidation (LPO) in female Drosophila melanogaster flies chronically exposed to paraquat (PQ), a redox cycling compound, compared to flies treated with vehicle only.
View Article and Find Full Text PDFParkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( -Syn), amyloid beta (A ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies.
View Article and Find Full Text PDFFamilial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD.
View Article and Find Full Text PDFBackground: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-β (Aβ) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease.
View Article and Find Full Text PDFSeveral efforts to develop new protocols to differentiate in in vitro human mesenchymal stromal cells (hMSCs) into dopamine (DA) neurons have been reported. We have formulated NeuroForsk 2.0 medium containing fibroblast growth factor type beta (FGFb), brain-derived neurotrophic factor (BDNF), melatonin, purmorphamine, and forskolin.
View Article and Find Full Text PDFFamilial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.
View Article and Find Full Text PDFBackground: Sex differences in Parkinson's disease (PD) risk are well-known. However, the role of sex chromosomes in the development and progression of PD is still unclear.
Objective: The objective of this study was to perform the first X-chromosome-wide association study for PD risk in a Latin American cohort.
Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser (p-Serα-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) has been linked to dopaminergic neuronal vulnerability to oxidative stress (OS), mitochondrial impairment, and increased cell death in idiopathic and familial Parkinson's disease (PD). However, how exactly this kinase participates in the OS-mitochondria-apoptosis connection is still unknown. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 LRRK2 knockout (KO) in the human embryonic kidney cell line 293 (HEK-293) to evaluate the cellular response to the mitochondrial inhibitor complex I rotenone (ROT), a well-known OS and cell death inducer.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability.
View Article and Find Full Text PDFParkinson's disease (PD), a progressive neurodegenerative movement disorder, has reached pandemic status worldwide. This neurologic disorder is caused primarily by the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Unfortunately, there are no therapeutic agents that slow or delay the disease progression.
View Article and Find Full Text PDFBackground: Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as AβPP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed.
View Article and Find Full Text PDFSex differences in Parkinson Disease (PD) risk are well-known. However, it is still unclear the role of sex chromosomes in the development and progression of PD. We performed the first X-chromosome Wide Association Study (XWAS) for PD risk in Latin American individuals.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is hematological neoplasia that affects human beings from early life to adulthood. Although ALL treatment has been effective, an important percentage of ALL patients are resilient to treatment. Therefore, there is an urgent need for testing a new combination of compounds for the treatment of this disease.
View Article and Find Full Text PDFBackground: Large-scale Parkinson's disease (PD) genome-wide association studies (GWAS) have, until recently, only been conducted on subjects with European-ancestry. Consequently, polygenic risk scores (PRS) constructed using PD GWAS data are likely to be less predictive when applied to non-European cohorts.
Methods: Using GWAS data from the largest study to date, we constructed a PD PRS for a Latino PD cohort (1497 subjects from LARGE-PD) and tested it for association with PD status and age at onset.
Background: Acute lymphoblastic leukemia (ALL) is still incurable hematologic neoplasia in an important percentage of patients. Therefore, new therapeutic approaches need to be developed.
Methods: To evaluate the cellular effect of cell-penetrating peptides C-PP on leukemia cells, Jurkat cells -a model of ALL were exposed to increasing concentration (50-500 μM) Aβ, R-G-Aβ and Aβ-G-R peptide for 24 h.
TPEN and TPGS have recently shown selective cytotoxic effects in vitro and ex vivo leukemia cells. In this study, we aimed to test the synergistic effect of combined TPEN and TPGS agents (thereafter, T2 combo) on Jurkat (clone-E61), K562, Ba/F3, and non-leukemia peripheral blood lymphocytes (PBL). The ED50 doses (i.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aβ aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need.
View Article and Find Full Text PDFIt is increasingly evident that LRRK2 kinase activity is involved in oxidative stress (OS)-induced apoptosis-a type of regulated cell death and neurodegeneration, suggesting LRRK2 inhibition as a potential therapeutic target. We report that a phenolic-rich extract of avocado Persea americana var. Colinred peel (CRE, 0.
View Article and Find Full Text PDFParkinson's disease (PD) is a complex progressive neurodegenerative disorder involving impairment of bodily movement caused by the specific destruction of dopaminergic (DAergic) neurons. Mounting evidence suggests that PD might be triggered by an interplay between environmental neurotoxicants (e.g.
View Article and Find Full Text PDFHuman menstrual blood-derived mesenchymal stromal cells (MenSCs) have become not only an important source of stromal cells for cell therapy but also a cellular source for neurologic disorders in vitro modeling. By using culture protocols originally developed in our laboratory, we show that MenSCs can be converted into floating neurospheres (NSs) using the Fast-N-Spheres medium for 24-72 h and can be transdifferentiated into functional dopaminergic-like (DALNs, ~ 26% TH + /DAT + flow cytometry) and cholinergic-like neurons (ChLNs, ~ 46% ChAT + /VAChT flow cytometry) which responded to dopamine- and acetylcholine-triggered neuronal Ca inward stimuli when cultured with the NeuroForsk and the Cholinergic-N-Run medium, respectively in a timely fashion (i.e.
View Article and Find Full Text PDF