Publications by authors named "Carlos Trallero-Giner"

Transition metal dichalcogenide (TMD) semiconductors are two-dimensional materials with great potential for the future of nano-optics and nano-optoelectronics as well as the rich and exciting development of basic research. The influence of an external magnetic field on a TMD monolayer raises a new question: to unveil the behavior of the magneto-polaron resonances (MPRs) associated with the phonon symmetry inherent in the system. It is shown that the renormalized Landau energy levels are modified by the interplay of the long-range Pekar-Fröhlich (PF) and short-range deformation potential (DP) interactions.

View Article and Find Full Text PDF

Several transition metal dichalcogenides (TMDs) can be exfoliated to produce nearly two-dimensional (2D) semiconductor layers supporting robust excitons with non-hydrogenic Rydberg series of states. Black phosphorus (BP) can also be layered to create a nearly 2D material with interesting properties including its pronounced in-plane anisotropy that influences, in particular, exciton states making them different from those in other 2D semiconductors. We apply the Rayleigh-Ritz variational method to evaluate the energies and approximate the wavefunctions of the ground and lowest excited states of the exciton in a 2D semiconductor with anisotropic effective masses of electrons and holes.

View Article and Find Full Text PDF

We have systematically studied the single-particle states in quantum rings produced by a set of concentric circular gates over a graphene sheet placed on a substrate. The resulting potential profiles and the interaction between the graphene layer and the substrate are considered within the Dirac Hamiltonian in the framework of the envelope function approximation. Our simulations allow microscopic mapping of the character of the electron and hole quasi-particle solutions according to the applied voltage.

View Article and Find Full Text PDF