Introduction: The functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans.
View Article and Find Full Text PDFIn medicine, a misdiagnosis or the absence of specialists can affect the patient's health, leading to unnecessary tests and increasing the costs of healthcare. In particular, the lack of specialists in otolaryngology in third world countries forces patients to seek medical attention from general practitioners, whom might not have enough training and experience for making correct diagnosis in this field. To tackle this problem, we propose and test a computer-aided system based on machine learning models and image processing techniques for otoscopic examination, as a support for a more accurate diagnosis of ear conditions at primary care before specialist referral; in particular, for myringosclerosis, earwax plug, and chronic otitis media.
View Article and Find Full Text PDF