Publications by authors named "Carlos Soubervielle-Montalvo"

The outbreak of the new COVID-19 disease is a serious health problem that has affected a large part of the world population, especially older adults and people who suffer from a previous comorbidity. In this work, we proposed a classifier model that allows for deciding whether or not a patient might suffer from the COVID-19 disease, considering spatio-temporal variables, physical characteristics of the patients and the presence of previous diseases. We used XGBoost to maximize the likelihood function of the multivariate logistic regression model.

View Article and Find Full Text PDF

Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands.

View Article and Find Full Text PDF

Dengue is a major public health concern mainly in tropical and subtropical environments worldwide. Despite several attempts to prevent this disease occurring in tropical regions of Mexico, it has not yet been controlled. This work focused on spatial modeling of confirmed dengue fever cases that occurred during the period 2010-2014 in the Huasteca Potosina region of Mexico.

View Article and Find Full Text PDF

Background: Preoperative assessment to find the safest trajectory in keyhole neurosurgery can reduce post operative complications.

Methods: We introduced a novel preoperative risk assessment semiautomated methodology based on the sum of N maximum risk values using a generic genetic algorithm for the safest trajectory search.

Results: A set of candidates trajectories were found for two surgical procedures.

View Article and Find Full Text PDF

We implemented a spatial model for analysing PM 10 maxima across the Mexico City metropolitan area during the period 1995-2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM 10 maxima in space and time.

View Article and Find Full Text PDF