This paper introduces a novel approach to learn multi-task regression models with constrained architecture complexity. The proposed model, named RFF-BLR, consists of a randomised feedforward neural network with two fundamental characteristics: a single hidden layer whose units implement the random Fourier features that approximate an RBF kernel, and a Bayesian formulation that optimises the weights connecting the hidden and output layers. The RFF-based hidden layer inherits the robustness of kernel methods.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2022
Background And Objective: Machine learning techniques typically used in dementia assessment are not able to learn multiple tasks jointly and deal with time-dependent heterogeneous data containing missing values. In this paper, we reformulate SSHIBA, a recently introduced Bayesian multi-view latent variable model, for jointly learning diagnosis, ventricle volume, and ADAS score in dementia on longitudinal data with missing values.
Methods: We propose a novel Bayesian Variational inference framework capable of simultaneously imputing missing values and combining information from several views.
A fundamental problem of supervised learning algorithms for brain imaging applications is that the number of features far exceeds the number of subjects. In this paper, we propose a combined feature selection and extraction approach for multiclass problems. This method starts with a bagging procedure which calculates the sign consistency of the multivariate analysis (MVA) projection matrix feature-wise to determine the relevance of each feature.
View Article and Find Full Text PDF