Publications by authors named "Carlos Santos-Martin"

Purpose: To examine the link between tremor and sex chromosome abnormalities, emphasizing the necessity of comprehensive physical examination.

Case Description: An 18-year-old man exhibited an isolated action tremor in both hands. Despite having no familial history of tremors and no identifiable secondary causes, his tall stature and learning difficulties suggested a genetic origin.

View Article and Find Full Text PDF

The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly DsbA (EcDsbA), has demonstrated the key role that the Cys-XX-Cys catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme.

View Article and Find Full Text PDF

The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates.

View Article and Find Full Text PDF

Thioredoxin (TRX)-fold proteins are ubiquitous in nature. This redox scaffold has evolved to enable a variety of functions, including redox regulation, protein folding, and oxidative stress defense. In bacteria, the TRX-like disulfide bond (Dsb) family mediates the oxidative folding of multiple proteins required for fitness and pathogenic potential.

View Article and Find Full Text PDF