Publications by authors named "Carlos Ruzafa-Silvestre"

This paper briefly discusses the utilization of pruning wastes as a lignocellulosic source of cellulose fibers, which could be of potential use in the development of valuable materials such as sustainable textiles and fillers for footwear components including uppers and soles. palm leaves, one of the most common plants found in the local environment of the Alicante region (Spain), was used as a biomass raw material. Determining appropriate processing parameters and their desired range of maximum cellulose extraction states is key to improving yields.

View Article and Find Full Text PDF

In this study, functional nanocoatings for water-repellent footwear leather materials were investigated by chemical plasma polymerisation by implanting and depositing the organosilicon compound hexamethyldisiloxane (HMDSO) using a low-pressure plasma system. To this end, the effect of monomers on leather plasma deposition time was evaluated and both the resulting plasma polymers and the deposited leather samples were characterised using different experimental techniques, such as: Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). In addition, leather samples were tested by standard tests for color change, water resistance, surface wetting resistance and dynamic water contact angle (DWCA).

View Article and Find Full Text PDF

The aim of this work is to develop sustainable reactive polyurethane hot melt adhesives (HMPUR) for footwear applications based on biobased polyols as renewable resources, where ma-croglycol mixtures of polyadipate of 1,4-butanediol, polypropylene and different biobased polyols were employed and further reacted with 4-4'-diphenylmethane diisocyanate. The different reactive polyurethane hot melt adhesives obtained were characterized with different experimental techniques, such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), softening temperature and melting viscosity. Finally, their adhesion properties were measured from T-peel tests on leather/HMPUR adhesives/SBR rubber joints in order to establish the viability of the used biobased polyols and the amount of these polyols that could be added to reactive polyurethane hot melt adhesives satisfactorily to meet the quality requirements of footwear joints.

View Article and Find Full Text PDF

The aim of this work is to develop hydrophobic coatings on leather materials by plasma polymerisation with a low-pressure plasma system using an organosilicon compound, such as hexamethyldisiloxane (HMDSO), as chemical precursor. The hydrophobic coatings obtained by this plasma process were evaluated with different experimental techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and standardised tests including colour measurements of the samples, surface coating thickness and water contact angle (WCA) measurements. The results obtained indicated that the monomer had polymerised correctly and completely on the leather surface creating an ultra-thin layer based on polysiloxane.

View Article and Find Full Text PDF