Publications by authors named "Carlos Ruiz-Canovas"

Article Synopsis
  • The Huelva estuary is influenced by acid mine drainage from the Tinto and Odiel rivers, leading to significant contamination from metals due to the Iberian Pyrite Belt.
  • The research explores how major metal(loid)s behave in these acidic waters during different seasons, revealing that metals like Iron and Al precipitate out when pH increases, while others like As can re-dissolve at higher pH levels.
  • Certain metals such as Zn, Cd, Mn, Co, and Ni did not show significant removal via precipitation and primarily decreased in concentration through dilution with seawater as they moved toward the Atlantic Ocean.
View Article and Find Full Text PDF

Rare earth elements (REE) are strategic elements due to their economic importance. However, the studies dedicated to the distribution and behaviour of REE in aquatic systems have been scarce until a few decades ago. This work studies the seasonal variations of REE concentrations in acid mine drainage (AMD) affected water courses and the factors controlling their mobility under different hydrological conditions.

View Article and Find Full Text PDF

Unlike acidic sulfide mine wastes, where metal/loid mobility and bioaccessibility has been widely studied, less attention has been paid to alkaline cyanide heap leaching wastes. Thus, the main goal of this study is to evaluate the mobility and bioaccessibility of metal/loids in Fe-rich (up to 55%) mine wastes resulting from historical cyanide leaching activities. Wastes are mainly composed of oxides/oxyhydroxides (i.

View Article and Find Full Text PDF

Ría of Huelva, located in southwestern Spain, is a highly metal(loid)-contaminated estuary system where sediments are exceeding action limits in an increasing order for Cd, Zn, Pb, Cu, and As. With a predicted sea level rise over the next 50 years, the estuary will be subject to flooding with brackish water or seawater. To evaluate the risk of metal(loid) mobilization under future climate scenarios, different locations along the estuary were sampled at different depths.

View Article and Find Full Text PDF

This study deals with the potential release of metal/loids from sulfide mine wastes upon weathering and the health risks associated with their accidental ingestion. To address this, a complete chemical and mineralogical characterization of a variety of sulfide mine wastes was performed alongside a determination of metal/loid bioaccessibility through leaching tests simulating human digestive and lung fluids. The mine wastes consisted predominantly of Fe (35-55% of FeO) and exhibited high concentrations of trace metalloids such as As (382-4310 mg/kg), Pb (205-15,974 mg/kg), Cu (78-1083 mg/kg), Zn (274-1863 mg/kg), or Sb (520-1816 mg/kg).

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on thallium (Tl) behavior in the highly polluted Ría de Huelva estuary in SW Spain, showing a significant decrease in dissolved Tl concentration during both dry and wet seasons.
  • Tl concentrations are notably higher than those found in other global estuaries, with desorption processes from iron minerals like jarosite being a key factor for Tl transport.
  • The impact of mining spills, particularly from May 2017, drastically increases Tl levels and enhances desorption, emphasizing the environmental risks associated with pollution in this area.
View Article and Find Full Text PDF
Article Synopsis
  • * A study was conducted on 27 pit lakes to analyze stable elements and radionuclides in water and sediment, using various measurement techniques like ICP-MS and spectrometry.
  • * Overall, water quality was generally good; however, some lakes showed low pH levels and high metal concentrations, with certain sediment samples exhibiting elevated levels of metals compared to natural lakes, while radiation levels remained within environmental norms.
View Article and Find Full Text PDF

Acid mine drainage (AMD) due to the mining of sulfide deposits is one of the most important causes of water pollution worldwide. Remediation measures, especially in historical abandoned mines, require a deep knowledge of the geochemical characteristics of AMD effluents and metal fluxes, considering their high spatial and temporal evolution, and the existence of point and diffuse sources with a different response to rainfall events. This study investigates the temporal variations and hydrogeochemical processes affecting the composition of main AMD sources from the Tharsis mines (SW Spain), one of most important historical metal mining districts in the world.

View Article and Find Full Text PDF

This paper addresses the behaviour of several technology critical metals (TCMs), i.e., rare earth elements (REEs), Y, Sc, Ga and Tl, in the Tinto River (SW Spain), quantifying their fluxes to the Atlantic Ocean and unravelling the governing geochemical processes controlling their solubility.

View Article and Find Full Text PDF

Metal pollution in estuaries represents a serious environmental challenge, especially in areas affected by industrial and mining activities. This study investigates the metal partitioning and availability of rare earth elements (REE), Y and other trace metals (Ag, Tl, U and Cs) in the Ria of Huelva estuary (SW Spain), strongly affected by mining and industrial activities. A 30 h monitoring campaign was performed collecting periodic water samples and deploying diffusive gradient in thin films (DGTs) devices to determine the main factors controlling metal availability.

View Article and Find Full Text PDF

This work deals with the distribution of rare earth elements (REE) in the abandoned Tharsis mines under different hydrological conditions. High concentrations of REE were observed; mean value of 1747 μg/L. The highest concentrations of REE were recorded during the dry period (DP, mean of 2220 μg/L) due to high evaporation and strong water-rock interactions.

View Article and Find Full Text PDF

This study deals with the metal partitioning and bioavailability of metal/loids in the estuary Ria of Huelva (SW Spain) which is strongly affected by historical mining and industrial activities. To address this issue, traditional (i.e.

View Article and Find Full Text PDF

The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.

View Article and Find Full Text PDF

The cementation complex of Las Viñas (SW Spain) is a partially reclaimed abandoned mine site located in the drainage basin of a water reservoir currently under construction. The aim of this investigation was to analyze these mine soils to evaluate their potential environmental impact, especially on the final reservoir water quality. Results evidence the extremely high acidity of soils (pH of 3.

View Article and Find Full Text PDF

Mining residues management is one of the greatest challenges for mining companies around the world. The increasing consciousness of the general public and governments about the potential threat that those residues can pose to the environment is demanding consistent and precise methodologies for assessing the potential release of toxic metals. On this regard, the modified BCR sequential extraction procedure (SEP) is frequently the chosen assessing protocol.

View Article and Find Full Text PDF

This study characterizes the hydrogeochemical behavior of one of the most pollutant sources in the Iberian Pyrite Belt, namely, the Poderosa adit outflow. This artificial spring arises from an anthropogenic mine aquifer with a similar hydrogeological behavior to karstic systems, where the infiltration area is an endorheic zone and the aquifer shows allogenic recharge. Recent mining has markedly increased the contaminant levels.

View Article and Find Full Text PDF

This paper investigates the mobility and fluxes of REE, Y and Sc under weathering conditions from an anomalously metal-rich phosphogypsum stack in SW Spain. The interactions of the phosphogypsum stack with rainfall and organic matter-rich solutions, simulating the weathering processes observed due to its location on salt-marshes, were simulated by leaching tests (e.g.

View Article and Find Full Text PDF

The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill.

View Article and Find Full Text PDF

Phosphogypsum wastes from phosphate fertilizer industries are stockpiled in stacks with high contamination potential. An assessment of the environmental impact, including the use of geochemical tracers such as rare earth elements (REE) and Cl/Br ratios, was carried out in the phosphogypsum stack located at the Estuary of Huelva (SW Spain). Inside the pile, highly polluted acid pore-waters flows up to the edge of the stack, emerging as small fluvial courses, known as edge outflows, which discharge directly into the estuary.

View Article and Find Full Text PDF

The Tinto River is an extreme case of pollution by acid mine drainage (AMD), with pH values below 3 and high sulphate, metal and metalloid concentrations along its main course. This study evaluates the impact of releases from a freshwater reservoir on the Tinto River, identifying the metal transport mechanisms. This information is needed to understand the water quality evolution in the long term, and involves the comprehension of interactions between AMD sources, freshwaters, particulate matter and sediments.

View Article and Find Full Text PDF