Natural based solutions, notably constructed/artificial wetland treatment systems, rely heavily on identification and use of macrophytes with the ability to tolerate multiple contaminants and grow for an extended period to reduce contamination. The potential to tolerate and remediate metal(loid) contaminated groundwater from an industrial site located in Flanders (Belgium) was assessed for 10 wetland macrophytes (including Carex riparia Curtis, Cyperus longus Baker, Cyperus rotundus L., Iris pseudacorus L.
View Article and Find Full Text PDFThe present study reports findings related to the treatment of polluted groundwater using macrophyte-assisted phytoremediation. The potential of three macrophyte species (Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) to tolerate exposure to multi-metal(loid) polluted groundwater was first evaluated in mesocosms for 7- and 14-day batch testing. In the 7-day batch test, the polluted water was completely replaced and renewed after 7 days, while for 14 days exposure, the same polluted water, added in the first week, was maintained.
View Article and Find Full Text PDFPersistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil.
View Article and Find Full Text PDFThe biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity.
View Article and Find Full Text PDFCharacteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each.
View Article and Find Full Text PDFBetter understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A "phytobial" treatment was included, with 3 plant growth-promoting rhizobacterial strains.
View Article and Find Full Text PDFThe biological effects induced by the pollutants present in soils, together with the chemical and physical characterizations, are good indicators to provide a general overview of their quality. However, the existence of studies where the toxicity associated to soils contaminated with mixtures of pollutants applying both in vitro and in vivo models are scarce. In this work, three soils (namely, Soil 001, Soil 002 and Soil 013) polluted with different concentrations of hydrocarbons and heavy metals were evaluated using different organisms representative of human (HepG2 human cell line) and environmental exposure (the yeast Saccharomyces cerevisiae, the Gram-negative bacterium Pseudomonas putida and, for the in vivo evaluation, the annelid Enchytraeus crypticus).
View Article and Find Full Text PDFIn the present work, the operational conditions for improving the degradation rates of Total Petroleum Hydrocarbons (TPHs) in contaminated soil from a machinery park were optimized at a microcosms scale along a 90-days incubation period. In this study, bioremediation strategies and an organic amendment have been tested to verify the remediation of soil contaminated with different hydrocarbons, mineral oils, and heavy metals. Specifically, designed biostimulation and bioaugmentation strategies were compared with and without adding vermicompost.
View Article and Find Full Text PDFSeventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions.
View Article and Find Full Text PDFThe membrane glycerolipids of four phototrophs that were isolated from an edaphic assemblage were determined by UPLC-MS after cultivation in a laboratory growth chamber. Identification was carried out by 18S and 16S rDNA sequencing. The algal species were (Charophyta), sp.
View Article and Find Full Text PDFThe Modern period in Europe is marked by the introduction of deep agricultural changes. In the Basque Country (northern Spain), the implantation of an intensive crop rotation was made possible by the expansion of agricultural liming, although the extent and implications of this practice have not been previously explored in depth. The present paper proposes a multidisciplinary approach to this question, based on the combined analysis of archival sources, toponymy, visual prospection focused on the presence of limekilns, and agricultural soil coring in four local contexts of the Atlantic Basque Country.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2021
Kaolinite-rich Cretaceous clay sediment samples from Burgos (Spain) have been analyzed by elemental analysis, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction and different spectroscopic techniques, as Fourier Transform Infrared, ultraviolet-visible and electron paramagnetic resonance. The clay sediment samples mainly contain quartz, muscovite and kaolinite. Different radicals, as A- and B-Centers in kaolinite and organic paramagnetic species, are detected.
View Article and Find Full Text PDFUsed mainly for sucrose production, sugar beet is one of the most important crops in Castilla y León (Spain). Several studies have demonstrated the benefits of microorganisms in different crop management programs, among which Plant Growth Promoting Rhizobacteria (PGPR). This research aims to assess the beneficial effects of two PGPRs strains ( Pf0-1 and CECT 462) on sugar beet () production.
View Article and Find Full Text PDFMicroalgae used in wastewater treatment may be applied to soil as a biofertilizer - this is a novel strategy for recycling of nutrients in the circular economy. There is little information about how the application of large concentrations of unicellular algae to soil will affect soil biochemistry, particularly when they are living algal cells with the potential to form a soil biofilm, whereas soil biofilms are expected to influence plant-microbe interactions. Chlorophyte unicellular algae of the Chlorella genera are widely employed in algae-based water treatment systems, and Chlorella sorokiniana has proven to be highly adaptable for this purpose.
View Article and Find Full Text PDFEvolution and change in agricultural practice is a major factor in the codification of social relations and represents one of the main resources employed by human societies to establish a durable relationship with their environment. Using a multi-proxy integrated approach, this paper seeks to decipher the long-term dynamics that have shaped agricultural landscapes in the Basque Country (N Spain). Social and economic indicators (archival records, toponymy and oral sources) are used along with geological core sampling (geochemistry, magnetic, palynological and carpological analyses) to reconstruct a diachronic sequence of human settlement and agricultural management in the village of Aizarna over the last ~1500 years.
View Article and Find Full Text PDFActive microalgae biomass from wastewater treatment may be given added value as a biofertilizer, but little is known about how this may affect soil nutrient dynamics and biology. If the goal is to recycle waste nutrients and matter, live algae applied in a liquid slurry to soil may add both organic carbon and nutrients while providing other benefits such as biological carbon fixation. However, the potential persistence of unicellular green algae after such an application is not known, nor the influence of their photosynthetic activity on soil organic carbon - the aim of the present study was to probe these basic questions.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
December 2014
This study compares the leachates generated in the treatment of Municipal Solid Wastes (MSW) of similar origin but managed in two different ways: (a) sorting and composting in a Treatment Plant in Aranda de Duero (Burgos, Spain), and (b) direct dumping in a landfill in Aranda de Duero (Burgos, Spain) with no prior treatment. Two different leachates were considered for the former: those generated in the fermentation shed (P1) and those generated in the composting tunnels (P2); another leachate was collected from the landfill (P3). Physical and chemical properties, including heavy metal contents, were seasonally monitored in the different leachates.
View Article and Find Full Text PDF