Comp Biochem Physiol B Biochem Mol Biol
January 2022
Fatty acid desaturation is a highly complex and regulated process involving different molecular and genetic actors. Ultimally, the fatty acid desaturase enzymes are responsible for the introduction of double bonds at different positions of specific substrates, resulting in a wide variety of mono- and poly-unsaturated fatty acids. This substrate-specificity makes it possible to meet all the functional needs of the different tissues against a wide variety of internal and external conditions, giving rise to a varied profile of expression and functionality of the different desaturases in the body.
View Article and Find Full Text PDFNitric oxide (NO) is a short-lived radical generated by nitric oxide synthases (NOS). NO is involved in a variety of functions in invertebrates, including host defense. In previous studies, we isolated and sequenced for the first time the NOS gene from hemocytes of Panulirus argus, demonstrating the inducibility of this enzyme by lipopolysaccharide in vitro e in vivo.
View Article and Find Full Text PDFStudies on the developmental onset of the teleost circadian clock have been carried out in zebrafish and, recently, in rainbow trout and Senegalese sole, where rhythms of clock gene expression entrained by light-dark (LD) cycles have been reported from the first days post fertilization. However, investigations of molecular clock rhythms during crucial developmental phases such as metamorphosis are absent in vertebrates. In this study, we documented the daily expression profile of Per1, Per2, Per3, and Clock during Senegalese sole pre-, early-, middle-, and post-metamorphic stages under LD 14:10 cycles (LD group), as well as under transient exposure to constant light (LL-LD group) or constant dark (DD-LD group) conditions.
View Article and Find Full Text PDFCircadian rhythms are established very early during vertebrate development. In fish, environmental cues can influence the initiation and synchronization of different rhythmic processes. Previous studies in zebrafish and rainbow trout have shown that circadian oscillation of clock genes represents one of the earliest detectable rhythms in the developing embryo, suggesting their significance in regulating the coordination of developmental processes.
View Article and Find Full Text PDFAn extensive network of endogenous oscillators governs vertebrate circadian rhythmicity. At the molecular level, they are composed of a set of clock genes that participate in transcriptional-translational feedback loops to control their own expression and that of downstream output genes. These clocks are synchronized with the environment, although entrainment by external periodic cues remains little explored in fish.
View Article and Find Full Text PDFNitric oxide (NO) is a short-lived radical generated by nitric oxide synthases (NOS). NO is involved in a variety of functions in invertebrates, including host defense. In a previous study, we isolated and sequenced for the first time the NOS gene from hemocytes of Panulirus argus, demonstrating the inducibility of this enzyme by lipopolysaccharide (LPS) in vitro.
View Article and Find Full Text PDFClock genes are responsible for generating and sustaining most rhythmic daily functions in vertebrates. Their expression is endogenously driven, although they are entrained by external cues such as light, temperature and nutrient availability. In the present study, a full-length coding region of Solea senegalensis clock gene Period3 (Per3) has been isolated from sole brain as a first step in understanding the molecular basis underlying circadian rhythms in this nocturnal species.
View Article and Find Full Text PDFThyroid hormone-induced metamorphosis seems to represent an ancestral feature of chrordates (urochordates, cephalochordates and vertebrates), but also of nonchordate animals. Although thyroid hormones and thyroid hormone receptor profiles during metamorphosis have been analyzed in different vertebrate taxa, including fish, developmental expression and activity of type 2 (dio2, D2) and type 3 (dio3, D3) iodothyronine deiodinases, two key enzymes in anuran metamorphosis, remain unknown in any fish species. The aim of this work was to investigate the development of thyroid hormone system during the metamorphosis of a flatfish species, the Senegalese sole, focusing on the deiodinases developmental profile.
View Article and Find Full Text PDFRegulation of somatolactin (SL) and the somatotropic axis was examined year-around at three different stocking times (spring, summer, and autumn) in a Mediterranean fish, the gilthead sea bream (Sparus aurata). The overall timing of plasma growth hormone (GH) increase was similar among trials (late spring-early summer), but the range of variation year-around was different and followed changes in food intake. Total plasma insulin-like growth factor-I primarily followed changes on growth rates, and a close positive correlation between IGF-I and thermal-unit growth coefficient (TGC) was found irrespective of fish stocking time.
View Article and Find Full Text PDFBackground: The centromere is a specialized locus that mediates chromosome movement during mitosis and meiosis. This chromosomal domain comprises a uniquely packaged form of heterochromatin that acts as a nucleus for the assembly of the kinetochore a trilaminar proteinaceous structure on the surface of each chromatid at the primary constriction. Kinetochores mediate interactions with the spindle fibers of the mitotic apparatus.
View Article and Find Full Text PDF