A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets.
View Article and Find Full Text PDFA loss of neuroplastic control on nucleus accumbens (NAc) neuronal activity exerted by the medial prefrontal cortex (mPFC) through long-term depression (LTD) is involved in triggering drug-seeking behavior and relapse on several substances of abuse due to impaired glutamate homeostasis in tripartite synapses of the nucleus accumbens (NAc) core. To test whether this maladaptive neuroplastic mechanism underlies the addiction-like behavior induced in young mice by a high-fat diet (HFD), we utilized 28-days-old male mice fed HFD ad-libitum over 2 weeks, followed by 5 days of HFD abstinence. Control groups were fed a regular diet.
View Article and Find Full Text PDFPrenatally malnourished rats develop hypertension in adulthood, in part through increased α-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively.
View Article and Find Full Text PDFModerate reduction of dietary protein (from 25% to 8% casein) in pregnant rats, calorically compensated by carbohydrates, gives rise to 'hidden prenatal malnutrition' (HPM) in the offspring since it does not alter body and brain weights of pups at birth. However, this dietary treatment leads to decreased β-adrenoceptor signaling and brain derived neurotrophic factor (BDNF) levels in the pup' brain, altogether with defective cortical long-term potentiation (LTP) and lowered visuospatial memory performance. Since early postnatal environmental enrichment (EE) has been shown to exert plastic effects on the developing brain and neuroprotection both on cognition and on structural properties of the neocortex, in the present study we addressed the question of whether early postnatal EE during the lactation period could exert compensatory changes in the expression of ®-adrenergic receptors and BDNF in the neocortex of HPM rats, and if these effects are associated with an improvement or even a restore of both neocortical LTP in vivo and cognitive performance induced by HPM.
View Article and Find Full Text PDFStudies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits.
View Article and Find Full Text PDFModerate reduction in dietary protein composition of pregnant rats from 25% to 8% casein, calorically compensated by carbohydrates, has been described as a "hidden malnutrition" because it does not alter body and brain weights of pups at birth. However, this dietary treatment leads to altered central noradrenergic systems, impaired cortical long-term potentiation (LTP) and worsened visuo-spatial memory performance. Given the increasing interest on the role played by β2-adrenoceptors (β2-ARs) on brain plasticity, the present study aimed to address the following in hidden-malnourished and eutrophic control rats: (i) the expression levels of β2-ARs in the frontal cortex determined by immunohistochemistry, and (ii) the effect of the β2 selective agonist clenbuterol on both LTP elicited in vivo in the prefrontal cortex and visuospatial performance measured in an eight-arm radial maze.
View Article and Find Full Text PDFObesity is a worldwide epidemic that is increasing at an alarming rate. One of its causes is the increased availability and consumption of diets rich in fat. In the present study, we investigated the effects of short-term consumption of a high fat diet (HFD) on dietary preferences in Swiss CD1 mice and its relation in time to specific metabolic effects.
View Article and Find Full Text PDFModerate reduction in the protein content of the mother's diet calorically compensated by carbohydrates (the so-called "hidden" prenatal malnutrition) leads to increased neocortical expression of the α(2C)-adrenoceptor subtype, together with decreased cortical release of noradrenaline and impaired long-term potentiation (LTP) and visuospatial memory performance during the rat postnatal life. In order to study whether overexpression of the α(2C)-adrenoceptor subtype is causally related to the decreased indices of neocortical plasticity found in prenatally malnourished rats, we evaluated the effect of intracortical (occipital cortex) administration of an antisense oligodeoxynucleotide (ODN) raised against the α(2C)-adrenoceptor mRNA on the LTP elicited in vivo in the occipital cortex of hidden prenatally malnourished rats. In addition, we compare the effect of the antisense ODN to that produced by systemical administration of the subtype-nonselective α(2)-adrenoceptor antagonist atipamezole.
View Article and Find Full Text PDFThe effect of prenatal malnutrition on the anatomy of the corpus callosum was assessed in adult rats (45-52 days old). In the prenatally malnourished animals we observed a significant reduction of the corpus callosum total area, partial areas, and perimeter, as compared with normal animals. In addition, the splenium of corpus callosum (posterior fifth) showed a significant decrease of fiber diameters in the myelinated fibers without changing density.
View Article and Find Full Text PDFModerate reduction in the protein content of the mother's diet (hidden malnutrition) does not alter body and brain weights of rat pups at birth, but leads to dysfunction of neocortical noradrenaline systems together with impaired long-term potentiation and visuo-spatial memory performance. As β₁-adrenoceptors and downstream protein kinase signaling are critically involved in synaptic long-term potentiation and memory formation, we evaluated the β₁-adrenoceptor density and the expression of cyclic-AMP dependent protein kinase, calcium/calmodulin-dependent protein kinase and protein kinase Fyn, in the frontal cortex of prenatally malnourished adult rats. In addition, we also studied if β₁-adrenoceptor activation with the selective β₁ agonist dobutamine could improve deficits of prefrontal cortex long-term potentiation presenting these animals.
View Article and Find Full Text PDFModafinil is a novel wake-promoting agent whose effects on cognitive performance have begun to be addressed at both preclinical and clinical level. The present study was designed to investigate in rats the effects of chronic modafinil administration on cognitive performance by evaluating: (i) working and reference memories in an Olton 4×4 maze, and (ii) learning of a complex operant conditioning task in a Skinner box. In addition, the effect of modafinil on the ability of the rat frontal cortex to develop long-term potentiation (LTP) was also studied.
View Article and Find Full Text PDFPrenatal undernutrition induces hypertension later in life, possibly by disturbing the hypothalamo-pituitary-adrenal axis through programming decreased expression of hypothalamic glucocorticoid receptors. We examined the systolic blood pressure, heart rate and plasma corticosterone response to intra-paraventricular dexamethasone, mifepristone and corticosterone in eutrophic and prenatally undernourished young rats. Undernutrition was induced during fetal life by restricting the diet of pregnant mothers to 10 g daily (40% of diet consumed by well-nourished controls).
View Article and Find Full Text PDFbeta-Adrenergic receptor stimulation can significantly facilitate synaptic potentiation in the hippocampus and enhance memory processes, but its effect on neocortical plastic mechanisms is less conclusive. In the present study we determined the effect of propranolol, a beta-adrenoceptor antagonist, on long-term potentiation (LTP) induced in vivo in rat occipital cortex by tetanizing stimulation of corpus callosum and observed a dose-dependent inhibition of LTP. We further administered propranolol through mini-osmotic pumps during 3 days, and observed the performance of rats in a complex operant conditioning learning paradigm and assessed the expression of brain-derived neurotrophic factor (BDNF) in the occipital cortex.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2009
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu(2+) binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis.
View Article and Find Full Text PDFMetabolic and inflammatory pathways crosstalk at many levels, and, while required for homeostasis, interaction between these pathways can also lead to metabolic dysregulation under conditions of chronic stress. Thus, we hypothesized that mechanisms might exist to prevent overt inflammatory responses during physiological fluctuations in nutrients or under nutrient-rich conditions, and we identified the six-transmembrane protein STAMP2 as a critical modulator of this integrated response system of inflammation and metabolism in adipocytes. Lack of STAMP2 in adipocytes results in aberrant inflammatory responses to both nutrients and acute inflammatory stimuli.
View Article and Find Full Text PDFThis review is focused on the structure and function of Alzheimer's amyloid deposits. Amyloid formation is a process in which normal well-folded cellular proteins undergo a self-assembly process that leads to the formation of large and ordered protein structures. Amyloid deposition, oligomerization, and higher order polymerization, and the structure adopted by these assemblies, as well as their functional relationship with cell biology are underscored.
View Article and Find Full Text PDFNeuropathological changes generated by human amyloid-beta peptide (Abeta) fibrils and Abeta-acetylcholinesterase (Abeta-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Abeta-AChE complexes trigger a more dramatic response in situ than Abeta fibrils alone as characterized by the following features observed 8 weeks after treatment: 1). amyloid deposits were larger than those produced in the absence of AChE.
View Article and Find Full Text PDFAmyloid deposition in Alzheimer fibrils forms neurotoxic senile plaques in a process that may be modulated by associated proteins. In this work we demonstrate the ability of laminin-1 and laminin-2 to inhibit fibril formation and toxicity on cultured rat hippocampal neurons. We confirm that the laminin-1-derived peptide YFQRYLI inhibits efficiently both fibril formation and neurotoxicity and show that the IKVAV peptide inhibits amyloid neurotoxicity despite its slight inhibition of fibril formation.
View Article and Find Full Text PDF