Mode-locking is a broad concept that encompasses different processes enabling short optical pulse formation in lasers. It typically requires an intracavity mechanism that discriminates between single and collective mode lasing, which can be complex and sometimes adds noise. Moreover, known mode-locking schemes do not guarantee phase stability of the carrier wave.
View Article and Find Full Text PDFWe theoretically and experimentally investigate type II second harmonic generation in III-V-on-insulator wire waveguides. We show that the propagation direction plays a crucial role and that longitudinal field components can be leveraged for robust and efficient conversion. We predict that the maximum theoretical conversion is larger than that of type I second harmonic generation for similar waveguide dimensions and reach an experimental conversion efficiency of 12%/W, limited by the propagation loss.
View Article and Find Full Text PDFWe develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission.
View Article and Find Full Text PDF