Publications by authors named "Carlos Marti-Gomez"

The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability-the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability.

View Article and Find Full Text PDF

Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy.

View Article and Find Full Text PDF

Mutations in a protein active site can lead to dramatic and useful changes in protein activity. The active site, however, is sensitive to mutations due to a high density of molecular interactions, substantially reducing the likelihood of obtaining functional multipoint mutants. We introduce an atomistic and machine-learning-based approach, called high-throughput Functional Libraries (htFuncLib), that designs a sequence space in which mutations form low-energy combinations that mitigate the risk of incompatible interactions.

View Article and Find Full Text PDF

Some protein binding pairs exhibit extreme specificities that functionally insulate them from homologs. Such pairs evolve mostly by accumulating single-point mutations, and mutants are selected if their affinity exceeds the threshold required for function. Thus, homologous and high-specificity binding pairs bring to light an evolutionary conundrum: how does a new specificity evolve while maintaining the required affinity in each intermediate? Until now, a fully functional single-mutation path that connects two orthogonal pairs has only been described where the pairs were mutationally close thus enabling experimental enumeration of all intermediates.

View Article and Find Full Text PDF

Faithful chromosome segregation requires the assembly of a bipolar spindle, consisting of two antiparallel microtubule (MT) arrays having most of their minus ends focused at the spindle poles and their plus ends overlapping in the spindle midzone. Spindle assembly, chromosome alignment, and segregation require highly dynamic MTs. The plus ends of MTs have been extensively investigated but their minus-end structure remains poorly characterized.

View Article and Find Full Text PDF

Alternative splicing (AS) plays a major role in the generation of transcript diversity. In the heart, roles have been described for some AS variants, but the global impact and regulation of AS patterns are poorly understood. Here, we studied the AS profiles in heart disease, their relationship with heart development, and the regulatory mechanisms controlling AS dynamics in the mouse heart.

View Article and Find Full Text PDF

Motivation: Alternative splicing (AS) is an important mechanism in the generation of transcript diversity across mammals. AS patterns are dynamically regulated during development and in response to environmental changes. Defects or perturbations in its regulation may lead to cancer or neurological disorders, among other pathological conditions.

View Article and Find Full Text PDF

Background: Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43).

View Article and Find Full Text PDF

Rationale: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored.

View Article and Find Full Text PDF

The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionofmjesdgsnutbacs9tmc21t811meuvte): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once