Publications by authors named "Carlos Marcuello"

Translation of photophysical properties of fluorescent sensors from solution to solid-gas environments functionalized surfaces constitutes a challenge in chemistry. In this work, we report on the chemical synthesis, barium capture ability and photophysical properties of two families of monocolor and bicolor fluorescent sensors. These sensors were prepared to capture barium cations that can be produced in neutrinoless double beta decay of Xe-136.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) imaging enables the visualization of protein molecules with high resolution, providing insights into their shape, size, and surface topography. Here, we use AFM to study the aggregation process of protein S100A9 in physiological conditions, in the presence of calcium at a molar ratio 4Ca:S100A9. We find that S100A9 readily assembles into a worm-like fibril, with a period dimension along the fibril axis of 11.

View Article and Find Full Text PDF

Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques.

View Article and Find Full Text PDF

Innovative materials are needed to produce scaffolds for various tissue engineering and regenerative medicine (TERM) applications, including tissue models. Materials derived from natural sources that offer low production costs, easy availability, and high bioactivity are highly preferred. Chicken egg white (EW) is an overlooked protein-based material.

View Article and Find Full Text PDF

Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics.

View Article and Find Full Text PDF

The production of bio-based composites with enhanced characteristics constitutes a strategic action to minimize the use of fossil fuel resources. The mechanical performances of these materials are related to the specific properties of their components, as well as to the quality of the interface between the matrix and the fibers. In a previous research study, it was shown that the polarity of the matrix played a key role in the mechanisms of fiber breakage during processing, as well as on the final properties of the composite.

View Article and Find Full Text PDF

Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective.

View Article and Find Full Text PDF

The Apoptosis-Inducing Factor (AIF) is a moonlighting flavoenzyme involved in the assembly of mitochondrial respiratory complexes in healthy cells, but also able to trigger DNA cleavage and parthanatos. Upon apoptotic-stimuli, AIF redistributes from the mitochondria to the nucleus, where upon association with other proteins such as endonuclease CypA and histone H2AX, it is proposed to organize a DNA-degradosome complex. In this work, we provide evidence for the molecular assembly of this complex as well as for the cooperative effects among its protein components to degrade genomic DNA into large fragments.

View Article and Find Full Text PDF

Intermittent jumping force is an operational atomic-force microscopy mode that produces simultaneous topography and tip-sample maximum-adhesion images based on force spectroscopy. In this work, the operation conditions have been implemented scanning in a repulsive regime and applying very low forces, thus avoiding unspecific tip-sample forces. Remarkably, adhesion images give only specific rupture events, becoming qualitative and quantitative molecular recognition maps obtained at reasonably fast rates, which is a great advantage compared to the force-volume modes.

View Article and Find Full Text PDF

Plastidic ferredoxin-NADP reductase (FNR) transfers two electrons from two ferredoxin or flavodoxin molecules to NADP, generating NADPH. The forces holding the FNR:NADP complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303 variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP attached to AFM tips.

View Article and Find Full Text PDF

Flavin and redox-active disulfide domains of ferredoxin-dependent flavin thioredoxin reductase (FFTR) homodimers should pivot between flavin-oxidizing (FO) and flavin-reducing (FR) conformations during catalysis, but only FR conformations have been detected by X-ray diffraction and scattering techniques. Atomic force microscopy (AFM) is a single-molecule technique that allows the observation of individual biomolecules with sub-nm resolution in near-native conditions in real-time, providing sampling of molecular properties distributions and identification of existing subpopulations. Here, we show that AFM is suitable to evaluate FR and FO conformations.

View Article and Find Full Text PDF

A new biobased material based on an original strategy using lignin model compounds as natural grafting additive on a nanocellulose surface through in situ polymerization of coniferyl alcohol by the Fenton reaction at two pH values was investigated. The structural and morphological properties of the materials at the nanoscale were characterized by a combination of analytical methods, including Fourier transform infrared spectroscopy, liquid chromatography combined with mass spectrometry, nuclear molecular resonance spectroscopy, electron paramagnetic resonance spectroscopy, water sorption capacity by dynamic vapor sorption, and atomic force microscopy (topography and indentation modulus measurements). Finally, the usage properties, such as antioxidant properties, were evaluated in solution and the nanostructured casted films by radical 2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging tests.

View Article and Find Full Text PDF

Lignocellulosic biomass is receiving growing interest as a renewable source of biofuels, chemicals and materials. Lignocellulosic polymers and cellulose nanocrystals (CNCs) present high added-value potential in the nanocomposite field, but some issues have to be solved before large-scale applications. Among them, the interaction between polymers at the nanoscale and the effect of the external parameters on the mechanical properties have to be more precisely investigated.

View Article and Find Full Text PDF

Magnetotactic bacteria are a group of organisms deeply studied in the last years due to their interesting magnetic behavior and potential applications in nanometrology, hyperthermia, and biosensor devices. One intrinsic common characteristic is the presence, inside the bacteria, of magnetic nanoparticles called magnetosomes. The role of magnetosomes as bacterial tools to orient the bacteria and find new habitats is universally accepted, but the way they develop still is not fully understood.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) experiments with functionalized tips are currently one of the most powerful tools to locally measure adhesion forces via single-molecule force spectroscopy (SMFS) measurements. The main difficulty is to precisely control the attachment of biomolecules to the cantilever. Different chemistry procedures have been developed including the use of spacer molecules.

View Article and Find Full Text PDF

Prokaryotic bifunctional FAD synthetases (FADSs) catalyze the biosynthesis of FMN and FAD, whereas in eukaryotes two enzymes are required for the same purpose. FMN and FAD are key cofactors to maintain the flavoproteome homeostasis in all type of organisms. Here we shed light to the properties of the hitherto unstudied bacterial FADS from the human pathogen Streptococcus pneumoniae (SpnFADS).

View Article and Find Full Text PDF

The microcystin-producing Microcystis aeruginosa PCC 7806 and its close strain, the nonproducing Microcystis aeruginosa PCC 7005, grow similarly in the presence of 17 μM iron. Under severe iron deficient conditions (0.05 μM), the toxigenic strain grows slightly less than in iron-replete conditions, while the nonproducing microcystin strain is not able to grow.

View Article and Find Full Text PDF

Single-molecule force spectroscopy is a powerful technique based on the application of controlled forces to macromolecules. In order to relate the measured response of the molecule to its equilibrium and dynamic properties, a suitable physical picture of the involved process is necessary. In this work, we introduce a plausible model for mechanical unbinding of some molecular complexes, based on a novel free energy profile.

View Article and Find Full Text PDF

The complexes formed between the flavoenzyme ferredoxin-NADP(+) reductase (FNR; NADP(+) =nicotinamide adenine dinucleotide phosphate) and its redox protein partners, ferredoxin (Fd) and flavodoxin (Fld), have been analysed by using dynamic force spectroscopy through AFM. A strategy is developed to immobilise proteins on a substrate and AFM tip to optimise the recognition ability. The differences in the recognition efficiency regarding a random attachment procedure, together with nanomechanical results, show two binding models for these systems.

View Article and Find Full Text PDF

The human Apoptosis Inducing Factor (hAIF) is a bifunctional NAD(P)H-dependent flavoreductase involved in both mitochondrial energy metabolism and caspase-independent cell death. Even though several studies indicate that both functions are redox controlled by NADH binding, the exact role of hAIF as a reductase in healthy mitochondria remains unknown. Upon reduction by NADH, hAIF dimerizes and produces very stable flavin/nicotinamide charge transfer complexes (CTC), by stacking of the oxidized nicotinamide moiety of the NAD(+) coenzyme against the re-face of the reduced flavin ring of its FAD cofactor.

View Article and Find Full Text PDF

The apoptosis-inducing factor (AIF) is a mitochondrial-flavoprotein that, after cell death induction, is distributed to the nucleus to mediate chromatinolysis. In mitochondria, AIF is present in a monomer-dimer equilibrium that after reduction by NADH gets displaced toward the dimer. The crystal structure of the human AIF (hAIF):NAD(H)-bound dimer revealed one FAD and, unexpectedly, two NAD(H) molecules per protomer.

View Article and Find Full Text PDF

Fur (ferric uptake regulator) proteins are involved in the control of a variety of processes in most prokaryotes. Although it is assumed that this regulator binds its DNA targets as a dimer, the way in which this interaction occurs remains unknown. We have focused on FurA from the cyanobacterium Anabaena sp.

View Article and Find Full Text PDF

The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the structural integrity of the protein.

View Article and Find Full Text PDF

Biochemical characterization of Corynebacterium ammoniagenes FADS (CaFADS) pointed to certain confusion about the stoichiometry of this bifunctional enzyme involved in the production of FMN and FAD in prokaryotes. Resolution of its crystal structure suggested that it might produce a hexameric ensemble formed by a dimer of trimers. We used atomic force microscopy (AFM) to direct imaging single CaFADS molecules bound to mica surfaces, while preserving their catalytic properties.

View Article and Find Full Text PDF