Publications by authors named "Carlos M Previtali"

The use of conjugated polymer nanoparticles (CP NPs) of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and poly(9,9-di-n-octylfluorenyl-2,7-diyl) as efficient photoinitiator systems (PIS) of vinyl polymerization in water is reported herein. CP NPs are biocompatible, excitable with blue commercial LEDs and, unlike visible light Type II PIS, do not need co-initiators to trigger a monomer chain reaction. CP NPs photoinitiate polymerization of a variety of acrylic monomers with initiation rates comparable to those observed for well-known Type II PIS.

View Article and Find Full Text PDF

The development of convenient synthetic methods and improved materials for the production of high load-capacity and biocompatible drug delivery systems is a challenging task with important implications in health sciences. In this work, acrylamide/2-hydroxyethylmethacrylate and N-isopropylacrylamide/2-hydroxyethylmethacrylate hydrogels were synthesized by photopolymerization using energy-efficient green-LEDs. A functionalized silsesquioxane was used as both crosslinker and co-initiator for the photopolymerization.

View Article and Find Full Text PDF

The photophysical and photochemical properties of the xanthene dyes mercurochrome (MCr) and eosin-Y (Eos); and the phenazine dye safranine-O (SF) are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of low generations. The dendrimers produce a red shift in the UV-vis absorption spectra of the dyes, which increases with concentration and the size of the PAMAM molecule. The Stern-Volmer plots of fluorescence quenching for xanthenic dyes present a downward curvature.

View Article and Find Full Text PDF

The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.

View Article and Find Full Text PDF

The photophysical and photochemical properties of the xanthene dyes Eosin Y, Erythrosin B, and Rose Bengal are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of relatively high generation (G3-G5) in alkaline aqueous solution. UV/Vis absorption and fluorescence spectra of the dyes show bathochromic shifts, which correlate with the size of the dendrimer. Binding constants (K ) are calculated from absorption data.

View Article and Find Full Text PDF

The interaction of the triplet state of the synthetic dye phenosafranine (3,7-diamino-5-phenylphenazinium chloride) with indolic compounds of biological relevance was investigated in water by means of laser flash photolysis. The rate constants for the triplet quenching were determined. The quenching process may be explained by an electron transfer from the indole to the dye in its triplet state.

View Article and Find Full Text PDF

Electron transfer (ET) rate constants were determined by means of lifetime measurements for the fluorescence quenching and by laser flash photolysis for the triplet quenching of the dye eosin Y by benzoquinones in acetonitrile. The results represent a new aspect of the dependence of the rate constants with the driving force in the diffusion limit region. That is, the rate constants for singlet quenching in the highly negative region of ΔGet do not decrease as predicted by Marcus theory, but rather show a small positive dependence on the driving force.

View Article and Find Full Text PDF

The photophysics of Safranine-O (3,6-diamino-2,7-dimethyl-5 phenyl phenazinium chloride) (SfH(+)Cl(-)) was investigated in reverse micelles (RMs) of AOT (sodium bis(2-ethylhexyl)sulfosuccinate) with special emphasis on the triplet state processes. The triplet is formed in its monoprotonated form, independently of the pH of the water used to prepare the RMs. While the intersystem crossing quantum yields in RMs are similar to those in organic solvents, the triplet lifetime is much longer.

View Article and Find Full Text PDF

The fluorescence quenching of pyrene (Py) by a series of N-methyl and N-H substituted indoles was studied in isooctane at 298 K. The fluorescence quenching rate constants were evaluated by mean of steady-state and time-resolved measurements. In all cases, the quenching process involves a charge-transfer (CT) mechanism.

View Article and Find Full Text PDF

Electron-transfer rate constants were determined by means of lifetime measurements for the fluorescence quenching of 9,10-dicyanoanthracene by aromatic amines and methoxybenzenes as electron donors, and for the quenching of the synthetic dyes eosin Y and phenosafranine by a series of p-benzoquinones as electron acceptors. All determinations were carried out in acetonitrile at 298 K. The quenching rate constants (k(q)) in the region of -1.

View Article and Find Full Text PDF

The quenching of the excited singlet and triplet states of phenosafranine by aliphatic amines was investigated in acetonitrile and methanol. The rate constants for the quenching of the excited singlet state depend on the one-electron redox potential of the amine suggesting a charge transfer process. However, for the triplet state, quenching dependence on the redox potential either is opposite to the expectation or there is not dependence at all.

View Article and Find Full Text PDF

Characterization of the excited states of the mycosporine-like amino acid palythine (lambda(max) = 320 nm) in aqueous solutions was achieved experimentally. The low value for the photodegradation quantum yield, (1.2 +/- 0.

View Article and Find Full Text PDF

The quenching of anthracene fluorescence by indole (IN), 1,2-dimethylindole (DMI), tryptophan (Trp) and indole 3-acetic acid (IAA) in dimiristoylphophatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers was investigated. The studies were carried out at 25 degrees C in POPC vesicles and below (15 degrees C) and above (35 degrees C) the phase transition temperature (24 degrees C) of DMPC. A very efficient quenching of the anthracene fluorescence by IN and DMI in the lipid membrane is observed in all cases.

View Article and Find Full Text PDF

The photochemistry of Ru(bpy)(3)+2 in the presence of amines was investigated in water by laser flash photolysis. N,N'-Dimethylaniline and p-phenylenediamine quench the luminescent metal to ligand charge transfer (MLCT) excited state of the complex by an electron transfer reaction that produces the semireduced form Ru(bpy)3+ in relatively high yields. On the other hand, triethylamine (TEA) and aniline do not quench the MLCT.

View Article and Find Full Text PDF

In vitro studies on the structurally related mycosporine-like amino acids (MAAs) porphyra-334 and shinorine in aqueous solutions were carried out aiming at their full photochemical and photophysical characterization and expanding the evidence on the assigned UV-photoprotective role of the molecules in vivo. The experiments on shinorine confirmed a high photostability and a poor fluorescence quantum yield, in concordance with previous results on porphyra-334. The estimation of triplet production quantum yields for both MAAs was achieved by laser-flash photolysis measurements.

View Article and Find Full Text PDF

Spectroscopic and photophysical properties of safranine O (Sf) were investigated in binary water/solvent mixtures. It was found that these properties are strongly solvent-dependent. A blue shift is observed for both the ground-state absorption and the triplet-triplet main absorption band when the solvent polarity augments.

View Article and Find Full Text PDF

The quenching of the excited singlet of indole and its methyl derivatives by monosubstituted benzenes has been studied in three solvents of different polarities and bimolecular quenching rate constants have been determined. Below the diffusion limit the rate constants decrease when solvent polarity increases, with the exception of those for the quenching by benzonitrile. For the latter the rate constants are near the diffusion limit in all cases.

View Article and Find Full Text PDF

The enthalpy and volume changes, deltaH and deltaV, associated with the 266 nm laser-induced photoionization reactions of aqueous ferrocyanide and iodide ions, to yield the hydrated electron, e(-)aq, and oxidized products were determined by temperature-dependent time-resolved photoacoustics. The photoionization quantum yield as function of temperature (9-30 degrees C) was determined by laser flash photolysis actinometry. The obtained values were used for the calculation of thermodynamic parameters associated with the formation of e(-)aq, such as the apparent partial molar volume, V(o)e = 26 cm3 mol(-1), and the standard formation enthalpy and entropy changes, deltaH(o)f,e = 31 kJ mol(-1) and TdeltaS(o)f,e = 338 kJ mol(-1).

View Article and Find Full Text PDF

The enthalpy and volume changes occurring in the triplet excited state proton-transfer reactions of safranine-T (SH+) in aqueous solutions at pH 4.8, 8.3, and 10.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7f5n0peh1nkovjbdbe3b9h63qb6r6cno): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once