Publications by authors named "Carlos M Portela"

Article Synopsis
  • - The study focuses on advancing the dynamic responses of micro-architected acoustic metamaterials, which have been underexplored compared to their quasi-static properties, particularly at high-frequency ranges.
  • - Researchers propose an innovative design framework using microspheres to adjust the mechanical characteristics of 3D metamaterials, achieving a significant increase in stiffness and wave propagation speeds without changing material density.
  • - This framework allows for easier design and production of metamaterials, opening up new possibilities for applications in medical ultrasound and analog computing through both experimental and numerical methods.
View Article and Find Full Text PDF

Ultralight architected materials enabled by advanced manufacturing processes have achieved density-normalized strength and stiffness properties that are inaccessible to bulk materials. However, the majority of this work has focused on static loading and elastic-wave propagation. Fundamental understanding of the mechanical behavior of architected materials under large-deformation dynamic conditions remains limited, due to the complexity of mechanical responses and shortcomings of characterization methods.

View Article and Find Full Text PDF

Mechanical metamaterials at the microscale exhibit exotic static properties owing to their engineered building blocks, but their dynamic properties have remained substantially less explored. Their design principles can target frequency-dependent properties and resilience under high-strain-rate deformation, making them versatile materials for applications in lightweight impact resistance, acoustic waveguiding or vibration damping. However, accessing dynamic properties at small scales has remained a challenge owing to low-throughput and destructive characterization or lack of existing testing protocols.

View Article and Find Full Text PDF

Self-assembled nanoparticle superlattices (NPSLs) are an emergent class of self-architected nanocomposite materials that possess promising properties arising from precise nanoparticle ordering. Their multiple coupled properties make them desirable as functional components in devices where mechanical robustness is critical. However, questions remain about NPSL mechanical properties and how shaping them affects their mechanical response.

View Article and Find Full Text PDF

Mechanical metamaterials have been designed to achieve custom Poisson's ratios via the deformation of their microarchitecture. These designs, however, have yet to achieve the capability of exhibiting Poisson's ratios that alternate by design both temporally and spatially according to deformation. This capability would enable dynamic shape-morphing applications including smart materials that process mechanical information according to multiple time-ordered output signals without requiring active control or power.

View Article and Find Full Text PDF

Architected materials with nanoscale features have enabled extreme combinations of properties by exploiting the ultralightweight structural design space together with size-induced mechanical enhancement at small scales. Apart from linear waves in metamaterials, this principle has been restricted to quasi-static properties or to low-speed phenomena, leaving nanoarchitected materials under extreme dynamic conditions largely unexplored. Here, using supersonic microparticle impact experiments, we demonstrate extreme impact energy dissipation in three-dimensional nanoarchitected carbon materials that exhibit mass-normalized energy dissipation superior to that of traditional impact-resistant materials such as steel, aluminium, polymethyl methacrylate and Kevlar.

View Article and Find Full Text PDF

Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human-made three-dimensional (3D) architected materials using beam-and-junction-based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented.

View Article and Find Full Text PDF

Low-density materials with tailorable properties have attracted attention for decades, yet stiff materials that can resiliently tolerate extreme forces and deformation while being manufactured at large scales have remained a rare find. Designs inspired by nature, such as hierarchical composites and atomic lattice-mimicking architectures, have achieved optimal combinations of mechanical properties but suffer from limited mechanical tunability, limited long-term stability, and low-throughput volumes that stem from limitations in additive manufacturing techniques. Based on natural self-assembly of polymeric emulsions via spinodal decomposition, here we demonstrate a concept for the scalable fabrication of nonperiodic, shell-based ceramic materials with ultralow densities, possessing features on the order of tens of nanometers and sample volumes on the order of cubic centimeters.

View Article and Find Full Text PDF

Architected materials can actively respond to external stimuli-such as mechanical forces, hydration and magnetic fields-by changing their geometries and thereby achieve novel functionalities. Such transformations are usually binary and volatile because they toggle between 'on' and 'off' states and require persistent external stimuli. Here we develop three-dimensional silicon-coated tetragonal microlattices that transform into sinusoidal patterns via cooperative beam buckling in response to an electrochemically driven silicon-lithium alloying reaction.

View Article and Find Full Text PDF

Designing mechanical metamaterials is overwhelming for most computational approaches because of the staggering number and complexity of flexible elements that constitute their architecture-particularly if these elements don't repeat in periodic patterns or collectively occupy irregular bulk shapes. We introduce an approach, inspired by the freedom and constraint topologies (FACT) methodology, that leverages simplified assumptions to enable the design of such materials with ~6 orders of magnitude greater computational efficiency than other approaches (e.g.

View Article and Find Full Text PDF

Creating materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance is challenging because thermal and mechanical properties are coupled in most fully dense and porous solids. Nanolattices can fill this void in the property space because of their hierarchical design and nanoscale features. We report that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m K at room temperature while maintaining specific stiffnesses of 0.

View Article and Find Full Text PDF

Most existing methods for additive manufacturing (AM) of metals are inherently limited to ~20-50 μm resolution, which makes them untenable for generating complex 3D-printed metallic structures with smaller features. We developed a lithography-based process to create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize hybrid organic-inorganic materials that contain Ni clusters to produce a metal-rich photoresist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to volatilize the organics, which produces a >90 wt% Ni-containing architecture.

View Article and Find Full Text PDF