Microtubule-targeting agents (MTAs) remain a gold standard for the treatment of several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic arrest followed by cell death. This antimitotic activity of MTAs is dependent on the spindle assembly checkpoint (SAC), which monitors the integrity of the mitotic spindle and proper chromosome attachments to microtubules in order to ensure accurate chromosome segregation and timely anaphase onset.
View Article and Find Full Text PDFNatural products have always been an important source of new hits and leads in drug discovery, with the marine environment being regarded as a significant source of novel and exquisite bioactive compounds. Yicathins B and C are two marine-derived xanthones that have shown antibacterial and antifungal activity. Herein, the total synthesis of these yicathins and six novel analogues is reported for the first time.
View Article and Find Full Text PDFMarine organisms represent almost half of total biodiversity and are a very important source of new bioactive substances. Within the varied biological activities found in marine products, their antimicrobial activity is one of the most relevant. Infectious diseases are responsible for high levels of morbidity and mortality and many antimicrobials lose their effectiveness with time due to the development of resistance.
View Article and Find Full Text PDFHigh-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein-coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential of free fatty acid receptor 4 (FFA4) as a novel therapeutic target for the treatment of type II diabetes, the broad distribution pattern of this receptor suggests it may play a range of roles beyond glucose homeostasis in different cells and tissues. To date, a single molecule, 4-methyl--9-xanthen-9-yl-benzenesulfonamide (AH-7614), has been described as an FFA4 antagonist; however, its mechanism of antagonism remains unknown.
View Article and Find Full Text PDFThe free fatty acid receptor 4 (FFA4 or GPR120) has appeared as an interesting potential target for the treatment of metabolic disorders. At present, most FFA4 ligands are carboxylic acids that are assumed to mimic the endogenous long-chain fatty acid agonists. Here, we report preliminary structure-activity relationship studies of a previously disclosed nonacidic sulfonamide FFA4 agonist.
View Article and Find Full Text PDFThe benzopyran and dihydrobenzopyran moieties can be considered as "privileged motifs" in drug discovery being good platforms for the search of new bioactive compounds. These moieties are commonly found fused to the xanthonic scaffold belonging to the biologically important family of the generally designated prenylated xanthones. Several pyranoxanthones have shown promising antitumor activity and since most of them are from natural origin, the biosynthetic pathway only allows a particular pattern of substitution which limits their structural diversity and renders any broad structure-activity study hard to be established.
View Article and Find Full Text PDFA promising antitumor xanthone derivative was optimized following a multidimensional approach that involved the synthesis of 17 analogues, the study of their lipophilicity and solubility, and the evaluation of their growth inhibitory activity on four human tumor cell lines. A new synthetic route for the hit xanthone derivative was also developed and applied for the synthesis of its analogues. Among the used cell lines, the HL-60 showed to be in general more sensitive to the compounds tested, with the most potent compound having a GI50 of 5.
View Article and Find Full Text PDF