Publications by authors named "Carlos M Fernandes"

We present a generative swarm art project that creates 3D animations by running a Particle Swarm Optimization algorithm over synthetic landscapes produced by an objective function. Different kinds of functions are explored, including mathematical expressions, Perlin noise-based terrain, and several image-based procedures. A method for displaying the particle swarm exploring the search space in aesthetically pleasing ways is described.

View Article and Find Full Text PDF

This paper investigates the performance and scalability of a new update strategy for the particle swarm optimization (PSO) algorithm. The strategy is inspired by the Bak-Sneppen model of co-evolution between interacting species, which is basically a network of fitness values (representing species) that change over time according to a simple rule: the least fit species and its neighbors are iteratively replaced with random values. Following these guidelines, a steady state and dynamic update strategy for PSO algorithms is proposed: only the least fit particle and its neighbors are updated and evaluated in each time-step; the remaining particles maintain the same position and fitness, unless they meet the update criterion.

View Article and Find Full Text PDF

KANTS is a swarm intelligence clustering algorithm inspired by the behavior of social insects. It uses stigmergy as a strategy for clustering large datasets and, as a result, displays a typical behavior of complex systems: self-organization and global patterns emerging from the local interaction of simple units. This paper introduces a simplified version of KANTS and describes recent experiments with the algorithm in the context of a contemporary artistic and scientific trend called swarm art, a type of generative art in which swarm intelligence systems are used to create artwork or ornamental objects.

View Article and Find Full Text PDF