Publications by authors named "Carlos M Corvalan"

The shelf-life and quality of food products depend heavily on antioxidants, which protect lipids from free radical degradation. α-Tocopherol and myricetin, two potent antioxidants, synergistically enhance the prevention of oxidative rancidity in bulk oil systems. Understanding their degradation kinetics is essential for deepening our knowledge of their mechanisms and developing strategies to predict shelf-life before expiration.

View Article and Find Full Text PDF

Microbubbles are largely unused in the food industry yet have promising capabilities as environmentally friendly cleaning and supporting agents within products and production lines due to their unique physical behaviors. Their small diameters increase their dispersion throughout liquid materials, promote reactivity because of their high specific surface area, enhance dissolution of gases into the surrounding liquid phase, and promote the generation of reactive chemical species. This article reviews techniques to generate microbubbles, their modes of action to enhance cleaning and disinfection, their contributions to functional and mechanical properties of food materials, and their use in supporting the growth of living organisms in hydroponics or bioreactors.

View Article and Find Full Text PDF

At the center of a collapsing hole lies a singularity, a point of infinite curvature where the governing equations break down. It is a topic of fundamental physical interest to clarify the dynamics of fluids approaching such singularities. Here, we use scaling arguments supported by high-fidelity simulations to analyze the dynamics of an axisymmetric hole undergoing capillary collapse in a fluid sheet of small viscosity.

View Article and Find Full Text PDF

The contraction of surfactant-laden pores at the microscale has implications for natural and technological processes ranging from the collapse of channels in lipid membranes to the stability of foams in the food processing industry. Despite their prevalence, our understanding of the mechanisms of pore contraction in the presence of surfactants remains unclear. These mechanisms have been challenging to study experimentally given the small length scale near the singularity and simulations capable of accurately characterizing the pore dynamics may help enhance our understanding of the process.

View Article and Find Full Text PDF

When two oppositely charged drops come into light contact, a liquid meniscus bridge with double-cone geometry forms between the drops. Recent experiments have demonstrated the existence of a critical cone angle above which the meniscus bridge pinches off and the drops do not coalesce. This striking behavior-which has implications for processes ranging from the coarsening of emulsions to electrospray ionization in mass spectrometry-has been studied theoretically and experimentally for inertial liquid drops.

View Article and Find Full Text PDF

Below a threshold size, a small pore nucleated in a fluid sheet will contract to minimize the surface energy. Such behavior plays a key role in nature and technology, from nanopores in biological membranes to nanopores in sensors for rapid DNA and RNA sequencing. Here we show that nanopores nucleated in viscous fluid sheets collapse following a universal scaling law for the pore radius.

View Article and Find Full Text PDF

In this article, we propose an alternative framework for the description of non-log-linear thermal inactivation of microorganisms. The proposed framework generalizes classical views by explicitly taking into account memory effects, such as those often associated with cumulative cell damage or progressive cell adaptation. Within this general framework, specialized memory models can be easily accommodated to describe different modes of microbial response to previous thermal stresses.

View Article and Find Full Text PDF

The conversion and degradation of malonylglucosides were kinetically characterized under elevated pH/heat conditions. Malonylgenistin and malonyldaidzin were heated at 60, 80, and 100 degrees C and pH values of 8.5, 9, and 9.

View Article and Find Full Text PDF

Isoflavones occur primarily as glycosides (namely, malonyl-, acetyl-, and non-conjugated beta-glycosides) and a small percentage as the bioactive aglycon. The different chemical structures of isoflavones can dictate their stability during processing. Therefore, our objective was to determine the effects of pH and thermal treatments on conjugated isoflavones with regard to interconversions and loss.

View Article and Find Full Text PDF