For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two-locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation-selection-drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome-wide association analyses is that many causal loci will pass undetected.
View Article and Find Full Text PDFIn the C1 population of Drosophila melanogaster of moderate effective size ( approximately 500), which was genetically invariant in its origin, we studied the regeneration by spontaneous mutation of the genetic variance for two metric traits [abdominal (AB) and sternopleural (ST) bristle number] and that of the concealed mutation load for viability, together with their temporal stability, using alternative selection models based on mutational parameters estimated in the C1 genetic background. During generations 381-485 of mutation accumulation (MA), the additive variances of AB and ST approached the levels observed in standing laboratory populations, fluctuating around their expected equilibrium values under neutrality or under relatively weak causal stabilizing selection. This type of selection was required to simultaneously account for the observed additive variance in our population and for those previously reported in natural and laboratory populations, indicating that most mutations affecting bristle traits would only be subjected to weak selective constraints.
View Article and Find Full Text PDFFor different fitness mutational models, with epistasis introduced, we simulated the consequences of drift (D scenario) or mutation, selection, and drift (MSD scenario) in populations at the MSD balance subsequently subjected to bottlenecks of size N = 2, 10, 50 during 100 generations. No "conversion" of nonadditive into additive variance was observed, all components of the fitness genetic variance initially increasing with the inbreeding coefficient F and subsequently decreasing to zero (D) or to an equilibrium value (MSD). In the D scenario, epistasis had no appreciable effect on inbreeding depression and that on the temporal change of variance components was relevant only for high rates of strong epistatic mutation.
View Article and Find Full Text PDFThe build up of an equilibrium between mutation, selection, and drift in populations of moderate size is an important evolutionary issue, and can be critical in the conservation of endangered populations. We studied this process in two Drosophila melanogaster populations initially lacking genetic variability (C1 and C2) that were subsequently maintained during 431 or 165 generations with effective population size N(e) approximately 500 (estimated by lethal complementation analysis). Each population originated synchronously to a companion set of full-sib mutation accumulation (MA) lines, C1 and MA1 were derived from an isogenic origin and C2 and MA2 from a single MA1 line at generation 265.
View Article and Find Full Text PDFThe effect of population bottlenecks on the components of the genetic variance/covariance generated by n neutral independent additive x additive loci has been studied theoretically. In its simplest version, this situation can be modelled by specifying the allele frequencies and homozygous effects at each locus, and an additional factor measuring the strength of the n-th order epistatic interaction. The variance/covariance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium over replicates randomly derived from the base population, after t bottlenecks of size N (derived components).
View Article and Find Full Text PDFThe effect of population bottlenecks on the components of the genetic covariance generated by two neutral independent epistatic loci has been studied theoretically (additive, covA; dominance, covD; additive-by-additive, covAA; additive-by-dominance, covAD; and dominance-by-dominance, covDD). The additive-by-additive model and a more general model covering all possible types of marginal gene action at the single-locus level (additive/dominance epistatic model) were considered. The covariance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium over replicates randomly derived from the base population, after t consecutive bottlenecks of equal size N (derived components).
View Article and Find Full Text PDFFor neutral additive genes, the quantitative index of population divergence (Q(ST)) is equivalent to Wright's fixation index (F(ST)). Thus, divergent or convergent selection is usually invoked, respectively, as a cause of the observed increase (Q(ST) > F(ST)) or decrease (Q(ST) < F(ST)) of Q(ST) from its neutral expectation (Q(ST) = F(ST)). However, neutral nonadditive gene action can mimic the additive expectations under selection.
View Article and Find Full Text PDFThe effect of population bottlenecks on the components of the genetic variance generated by two neutral independent epistatic loci has been studied theoretically (VA, additive; VD, dominant; VAA, additive x additive; VAD, additive x dominant; VDD; dominant x dominant components of variance). Nonoverdominance and overdominance models were considered, covering all possible types of marginal gene action at the single locus level. The variance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium, after t consecutive bottlenecks of equal size N (derived components).
View Article and Find Full Text PDFSpontaneous mutations were allowed to accumulate for 104-161 generations in 113-176 inbred lines, independently maintained by a single brother-sister mating per generation, all of them derived from a completely homozygous population of Drosophila melanogaster. In each of two to three consecutive generations, all lines were scored for fecundity, egg-to-pupa and pupa-to-adult viabilities, both in the standard laboratory culture medium (ST) and in three harsh media differing from the former by a single factor: higher temperature (HT), higher NaCl concentration (HSC), or a much reduced concentration of nutrients (D). Relative to the standard medium, productivity (fecundity × viability) decreased by 25% (HT), 66% (HSC), and 80% (D).
View Article and Find Full Text PDFInbreeding and artificial selection experiments were conducted to investigate the genetic properties of egg-to-pupa viability in a population of Drosophila melanogaster. The effect of different levels of inbreeding (F = 0, 0.25, 0.
View Article and Find Full Text PDF