Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy.
View Article and Find Full Text PDFTwo Zn-based metal organic frameworks have been prepared solvothermally, and their selectivity for CO2 adsorption was investigated. In both frameworks, the inorganic structural building unit is composed of Zn(II) bridged by the 2-carboxylate or 5-carboxylate pendants of 2,5-pyridine dicarboxylate (pydc) to form a 1D zigzag chain. The zigzag chains are linked by the bridging 2,5-carboxylates across the Zn ions to form 3D networks with formulas of Zn4(pydc)4(DMF)2·3DMF (1) and Zn2(pydc)2(DEF) (2).
View Article and Find Full Text PDF