Publications by authors named "Carlos Kenichi Suzuki"

This work presents an optical fiber dynamic light scattering sensor capable of simultaneously assessing concentration and flow speed of nanofluids. Silica nanoparticles (189 nm) in water were tested, yielding a sensitivity of 0.78288 × 10³ s for static conditions.

View Article and Find Full Text PDF

This research presents a microfermentor integrated into an optical fiber sensor based on quasi-elastic light scattering (QELS) to monitor and swiftly identify cellular growth kinetic parameters. The system uses a 1310 nm laser light that is guided through single-mode silica optical fibers to the interior of perfusion chambers, which are separated by polycarbonate membranes (470 nm pores) from microchannels, where a culture medium flows in a constant concentration. The system contains four layers, a superior and an inferior layer made of glass, and two intermediate poly(dimethylsiloxane) layers that contain the microchannels and the perfusion chambers, forming a reversible microfluidic device that requires only the sealing of the fibers to the inferior glass cover.

View Article and Find Full Text PDF

A quantitative study of image matching techniques applied to fiber specklegram sensor analysis is presented. The fiber status is modulated by a microbending transducer, so the output speckle field can be correlated to the input displacements. Once acquired and preprocessed, the specklegrams' variations were evaluated according to seven approaches.

View Article and Find Full Text PDF

An optical fiber specklegram sensor interrogation method based on speckle pattern fragmentation is presented. The acquired specklegram images are divided in a square grid, creating sub-images that are further processed by a correlation technique, allowing the quantification of localized changes in the specklegrams. The methodology was tested on the assessment of linear displacements using a microbending transducer, by evaluating different grid sizes.

View Article and Find Full Text PDF

The Apico Aortic Blood Pump (AABP) is a centrifugal continuous flow left ventricular assist device (LVAD) with ceramic bearings. The device is in the initial development phase and is being designed to be attached directly to the left ventricular apex by introducing an inlet cannula. This paper reports results from in vitro experiments.

View Article and Find Full Text PDF