Publications by authors named "Carlos Jimenez-Rivera"

Article Synopsis
  • The brain's ability to handle novelty stimulates curiosity and exploration, which may influence sensitivity to cocaine.
  • Key brain areas involved in exploring new environments include the locus coeruleus (LC), the ventral tegmental area (VTA), and the hippocampus.
  • The study found that exposure to novel environments affects the activity of VTA dopamine neurons, suggesting the LC plays a significant role in regulating dopamine responses even after cocaine exposure.
View Article and Find Full Text PDF

The hyperpolarization-activated cation current (I) is a determinant of intrinsic excitability in various cells, including dopaminergic neurons (DA) of the ventral tegmental area (VTA). In contrast to other cellular conductances, I is activated by hyperpolarization negative to -55 mV and activating I produces a time-dependent depolarizing current. Our laboratory demonstrated that cocaine sensitization, a chronic cocaine behavioral model, significantly reduces I amplitude in VTA DA neurons.

View Article and Find Full Text PDF

Midbrain dopamine neurons communicate signals of reward anticipation and attribution of salience. This capacity is distorted in heroin or cocaine abuse or in conditions such as human mania. A shared characteristic among rodent models of these behavioral disorders is that dopamine neurons in these animals acquired a small size and manifest an augmented spontaneous and burst activity.

View Article and Find Full Text PDF

The ventral tegmental area (VTA) plays an important role in the reward and motivational processes that facilitate the development of drug addiction. Presynaptic α1-AR activation modulates glutamate and Gamma-aminobutyric acid (GABA) release. This work elucidates the role of VTA presynaptic α1-ARs and their modulation on glutamatergic and GABAergic neurotransmission during cocaine sensitization.

View Article and Find Full Text PDF

The I is a mixed depolarizing current present in neurons which, upon activation by hyperpolarization, modulates neuronal excitability in the mesocorticolimbic (MCL) system, an area which regulates emotions such as pleasure, reward, and motivation. Its biophysical properties are determined by HCN protein expression profiles, specifically HCN subunits 1-4. Previously, we reported that cocaine-induced behavioral sensitization increases HCN2 protein expression in all MCL areas with the Ventral Tegmental Area (VTA) showing the most significant increase.

View Article and Find Full Text PDF

Chronic cocaine exposure produces enduring neuroadaptations in the brain's reward system. Persistence of early cocaine-evoked neuroadaptations in the ventral tegmental area (VTA) is necessary for later synaptic alterations in the nucleus accumbens (NAc), suggesting a temporal sequence of neuroplastic changes between these two areas. However, the molecular nature of the signal that mediates this sequential event is unknown.

View Article and Find Full Text PDF

In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.

View Article and Find Full Text PDF

Unlabelled: The progressive escalation of psychomotor responses that results from repeated cocaine administration is termed sensitization. This phenomenon alters the intrinsic properties of dopamine (DA) neurons from the ventral tegmental area (VTA), leading to enhanced dopaminergic transmission in the mesocorticolimbic network. The mechanisms underlying this augmented excitation are nonetheless poorly understood.

View Article and Find Full Text PDF

The ventral tegmental area (VTA) plays an important role in reward and motivational processes involved in drug addiction. Previous studies have shown that alpha1-adrenoreceptors (α1-AR) are primarily found pre-synaptically at this area. We hypothesized that GABA released onto VTA-dopamine (DA) cells is modulated by pre-synaptic α1-AR.

View Article and Find Full Text PDF

Chronic cocaine use produces long-lasting changes in reward circuits that may underlie the transition from casual to compulsive patterns of drug use. Although strong neuroadaptations within the mesocorticolimbic system are known to occur, the specific role of these drug-induced plasticities on sensitization remains to be elucidated. Here we investigate whether PKMζ, a protein involved in maintaining long-term potentiation (LTP), plays a role in these cocaine-induced changes in synaptic strengthening.

View Article and Find Full Text PDF

The ventral tegmental area (VTA), and in particular dopamine (DA) neurons in this region of midbrain, has been shown to play an important role in motivation (goal-directed behavior), reward, and drug addiction. Most evidence that implicates VTA DA neurons in these functions are based on widely accepted but indirect electrophysiological characterization, including the hyperpolarization activated non-specific cation current (Ih), spike frequency, and inhibition by D2 receptor agonists. In this study, we used a known neuronal dopamine transporter (DAT) fluorescent substrate [4-(4- (dimethylamino) styryl)-N-methylpyridinium iodide] (ASP+) to visualize DAT-containing cell bodies of DA neurons in VTA region in rat brain slices.

View Article and Find Full Text PDF

Alteration of the biological activity among neuronal components of the mesocorticolimbic (MCL) system has been implicated in the pathophysiology of drug abuse. Changes in the electrophysiological properties of neurons involved in the reward circuit seem to be of utmost importance in addiction. The hyperpolarization-activated cyclic nucleotide current, I h, is a prominent mixed cation current present in neurons.

View Article and Find Full Text PDF

The ventral tegmental area (VTA) forms part of the mesocorticolimbic system and plays a pivotal role in reward and reinforcing actions of drugs of abuse. Glutamate transmission within the VTA controls important aspects of goal-directed behavior and motivation. Noradrenergic receptors also present in the VTA have important functions in the modulation of neuronal activity.

View Article and Find Full Text PDF

The progressive augmentation of motor activity that results from repeated cocaine administration is termed behavioral sensitization. This phenomenon is thought to be a critical component in compulsive drug taking and relapse. Still, the cellular mechanisms that underlie sensitization remain elusive.

View Article and Find Full Text PDF

1,1 '-Diethyl-2,2'-cyanine iodide (decynium22; D22) is a potent blocker of the organic cation family of transporters (EMT/OCT) known to move endogenous monoamines like dopamine and norepinephrine across cell membranes. Decynium22 is a cation with a relatively high affinity for all members of the OCT family in both human and rat cells. The mechanism through which decynium22 blocks OCT transporters are poorly understood.

View Article and Find Full Text PDF

Receptor desensitization, or decreased responsiveness of a receptor to agonist stimulation, represents a regulatory process with the potential to have a significant impact on cell behavior. P2Y(2), a G-protein-coupled receptor activated by extracellular nucleotides, undergoes desensitization at many tissues, including the vascular endothelium. Endothelial cells from a variety of vascular beds are normally exposed to extracellular nucleotides released from damaged cells and activated platelets.

View Article and Find Full Text PDF

The increased activity and stereotyped behaviors that result from repeated administration of cocaine is called cocaine sensitization. This sensitized response has been postulated as one of the basic pathophysiological mechanisms in drug addiction. Recent evidence indicates that noradrenergic neurotransmission might be implicated in some of the behavioral effects of cocaine.

View Article and Find Full Text PDF

Kainic acid and pilocarpine were used to assess sex differences in temporal lobe seizures. Adult Sprague-Dawley rats were injected with kainic acid (10-12 mg/kg) or with pilocarpine (380 mg/kg) and behavior was recorded for the next 3 h. Trunk blood was collected for hormonal measurements.

View Article and Find Full Text PDF

Estrogen is known to modulate the behavioral response to cocaine; however the mechanisms by which this is accomplished is unknown. In this study we examine one possible candidate, the endogenous opioid system. Adult Sprague-Dawley rats were ovariectomized (OVX), half received Silastic implants with estradiol benzoate (OVX-EB), the other half received empty implants (OVX).

View Article and Find Full Text PDF