Publications by authors named "Carlos J Rodriguez-Ortiz"

Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is a rapidly increasing health concern during midlife and is an emerging risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). While angiotensin receptor blockers (ARB) are widely used for MetS-associated hypertension and kidney disease, its therapeutic potential in the brain during MetS are not well-described. Here, we tested whether treatment with ARB could alleviate the brain pathology and inflammation associated with MetS using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat.

View Article and Find Full Text PDF

Ascorbic acid (AA) uptake in neurons occurs via a Na-dependent carrier-mediated process mediated by the sodium-dependent vitamin C transporter-2 (SVCT2). Relatively little information is available concerning the network of interacting proteins that support human (h)SVCT2 trafficking and cell surface expression in neuronal cells. Here we identified the synaptogenic adhesion protein, calsyntenin-3 (CLSTN3) as an hSVCT2 interacting protein from yeast two-hybrid (Y2H) screening of a human adult brain cDNA library.

View Article and Find Full Text PDF

The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aβ under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression.

View Article and Find Full Text PDF

Effective clearance of neurotoxic amyloid-beta (Aβ) from the brain is a critical process to prevent Alzheimer's disease (AD). One major clearance mechanism is Aβ transcytosis mediated by low-density lipoprotein receptor-related protein 1 (LRP1) in capillary endothelial cells. A marked loss of endothelial LRP1 is found in AD brains and is believed to significantly impair Aβ clearance.

View Article and Find Full Text PDF

Background: Copper (Cu) is an essential metal mediating a variety of vital biological reactions with its redox property. Its dyshomeostasis has been associated with accelerated cognitive decline and neurodegenerative disorders, such as Alzheimer's disease (AD). However, underlying neurotoxic mechanisms elicited by dysregulated Cu remain largely elusive.

View Article and Find Full Text PDF

Microglial dysregulation, pertaining to impairment in phagocytosis, clearance and containment of amyloid-β (Aβ), and activation of neuroinflammation, has been posited to contribute to the pathogenesis of Alzheimer's disease (AD). Detailed cellular mechanisms that are disrupted during the disease course to display such impairment in microglia, however, remain largely undetermined. We hypothesize that loss of hematopoietic cell kinase (HCK), a phagocytosis-regulating member of the Src family tyrosine kinases that mediate signals from triggering receptor expressed on myeloid cells 2 and other immunoreceptors, impairs microglial homeostasis and Aβ clearance, leading to the accelerated buildup of Aβ pathology and cognitive decline during the early stage of neuropathological development.

View Article and Find Full Text PDF

MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA-181a (miR-181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity-related proteins at synapses. We have previously demonstrated that miR-181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity-related proteins.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is currently conceptualized as a disease of synaptic failure. Synaptic impairments are robust within the AD brain and better correlate with dementia severity when compared with other pathological features of the disease. Nevertheless, the series of events that promote synaptic failure still remain under debate, as potential triggers such as β-amyloid (Aβ) can vary in size, configuration and cellular location, challenging data interpretation in causation studies.

View Article and Find Full Text PDF

Defects in interleukin-1β (IL-1β)-mediated cellular responses contribute to Alzheimer's disease (AD). To decipher the mechanism associated with its pathogenesis, we investigated the molecular events associated with the termination of IL-1β inflammatory responses by focusing on the role played by the target of Myb1 (TOM1), a negative regulator of the interleukin-1β receptor-1 (IL-1R1). We first show that TOM1 steady-state levels are reduced in human AD hippocampi and in the brain of an AD mouse model versus respective controls.

View Article and Find Full Text PDF

Chronic exposure to copper and its dyshomeostasis have been linked to accelerated cognitive decline and potentially increasing risk for Alzheimer's disease (AD). We and others have previously demonstrated that exposure to copper through drinking water significantly increased parenchymal amyloid-beta (Aβ) plaques and decreased endothelial low-density lipoprotein receptor-related protein 1 (LRP1) in mouse models of AD. In this study, we determined the underlying mechanisms that microRNA critically mediated the copper-induced loss of endothelial LRP1.

View Article and Find Full Text PDF

Emerging evidence have posited that dysregulated microglia impair clearance and containment of amyloid-β (Aβ) species in the brain, resulting in aberrant buildup of Aβ and onset of Alzheimer's disease (AD). Hematopoietic cell kinase (Hck) is one of the key regulators of phagocytosis among the Src family tyrosine kinases (SFKs) in myeloid cells, and its expression is found to be significantly altered in AD brains. However, the role of Hck signaling in AD pathogenesis is unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impairs memory and causes cognitive and psychiatric deficits. New evidences indicate that AD is conceptualized as a disease of synaptic failure, although the molecular and cellular mechanisms underlying these defects remain to be elucidated. Determining the timing and nature of the early synaptic deficits is critical for understanding the progression of the disease and for identifying effective targets for therapeutic intervention.

View Article and Find Full Text PDF

Glutamate overload triggers synaptic and neuronal loss that potentially contributes to neurodegenerative diseases including Alzheimer's disease (AD). Glutamate clearance and regulation at synaptic clefts is primarily mediated by glial glutamate transporter 1 (GLT-1). We determined that inflammatory cytokines significantly upregulated GLT-1 through microRNA-181a-mediated post-transcriptional modifications.

View Article and Find Full Text PDF

Long-term memories can undergo destabilization/restabilization processes, collectively called reconsolidation. However, the parameters that trigger memory reconsolidation are poorly understood and are a matter of intense investigation. Particularly, memory retrieval is widely held as requisite to initiate reconsolidation.

View Article and Find Full Text PDF

Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative disease associated with progressive memory and cognitive decline. Previous studies have identified the benefits of cognitive enrichment on reducing disease pathology. Additionally, epidemiological and clinical data suggest that repeated exercise, and cognitive and social enrichment, can improve and/or delay the cognitive deficiencies associated with aging and neurodegenerative diseases.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and other cognitive functions in the elderly. The social and financial impacts of AD are overwhelming and are escalating exponentially as a result of population aging. Therefore, identifying AD-related risk factors and the development of more efficacious therapeutic approaches are critical to cure this neurological disorder.

View Article and Find Full Text PDF

Glial glutamate transporter, GLT-1, is the major Na(+)-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD patients, yet the underlying molecular mechanism and its pathological consequence in AD are not well understood. Here, we find the temporal decrease in GLT-1 levels in the hippocampus of the 3xTg-AD mouse model and that the pharmacological upregulation of GLT-1 significantly ameliorates the age-dependent pathological tau accumulation, restores synaptic proteins, and rescues cognitive decline with minimal effects on Aβ pathology.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a leading cause of dementia among elderly. Yet, its etiology remains largely unclear. In this review, we summarize studies that associate systemic infection and neuroinflammation with AD, while highlighting that early-life or life-long exposure to infectious agents predisposes one to develop AD at a later age.

View Article and Find Full Text PDF

In the first part of this review, we will present evidence showing a functional double dissociation between different structures of the medial temporal lobe in the consolidation of object and object-in-context recognition memory. In addition, we will provide evidence to support this differential participation through protein synthesis inhibitors and neurotransmitters antagonists and agonists. This evidence points out that the perirhinal, prefrontal and insular cortices consolidate the information of individual stimuli, i.

View Article and Find Full Text PDF

Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have been involved in object recognition memory formation, the present study evaluated whether retrieval and reconsolidation are independent processes by manipulating these glutamate receptors. The results showed that AMPA receptor antagonist infusions in the perirhinal cortex blocked retrieval, but did not affect memory reconsolidation, although NMDA receptor antagonist infusions disrupted reconsolidation even if retrieval was blocked.

View Article and Find Full Text PDF

MicroRNAs are a group of small RNAs that regulate diverse cellular processes including neuronal function. Recent studies have shown that dysregulation of specific microRNAs is critically involved in the development of Alzheimer's disease (AD). Most of these reports have focused on microRNAs implicated in alterations of amyloid-β and tau.

View Article and Find Full Text PDF

Patients affected by diabetes show an increased risk of developing Alzheimer disease (AD). Similarly, patients with AD show impaired insulin function and glucose metabolism. However, the underlying molecular mechanisms connecting these two disorders are still not well understood.

View Article and Find Full Text PDF