Publications by authors named "Carlos J R Silva"

This manuscript describes the synthesis and characterization of five new organic-inorganic hybrid (OIH) sol-gel materials that were obtained from a functionalized siloxane 3-glycidoxypropyltrimethoxysilane (GPTMS) by the reaction with the new Jeffamine, namely three different diamines, i.e., EDR-148, RFD-270, and THF-170, a secondary diamine, i.

View Article and Find Full Text PDF

Nowadays, concrete degradation is a major problem in the civil engineering field. Concrete carbonation, one of the main sources of structures' degradation, causes concrete's pH to decrease; hence, enabling the necessary conditions for corrosion reinforcement. An accurate, non-destructive sensor able to monitor the pH decrease resistant to concrete conditions is envisaged by many researchers.

View Article and Find Full Text PDF

Eumelanins are melanocyte-derived natural pigments with inherent electrical cues and outstanding physicochemical properties, which enhance the electroconductivity of the synthetic polymeric scaffold, upon incorporation as nanoparticles. Electrospun nanofibrous meshes generated from such composite polymers are of great interest for muscle tissue engineering applications. In this study, we investigated the feasibility of fabricating nanofibrous scaffolds of polyvinyl alcohol (PVA) incorporated with eumelanin nanoparticles (EUNp) by electrospinning and further assessed their impact on myogenic differentiation of skeletal myoblasts.

View Article and Find Full Text PDF

Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance.

View Article and Find Full Text PDF

Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes.

View Article and Find Full Text PDF

Curcumin is a natural polyphenolic compound isolated from turmeric () with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success.

View Article and Find Full Text PDF

Carbon nanofibres were functionalized by a Diels-Alder cycloaddition reaction of 1,3-butadiene, generated in situ from sulfolene. The experimental conditions were selected on the basis of a differential scanning calorimetry (DSC) study on the reagents and the functionalization was confirmed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Analysis performed on the surface of the functionalized material by X-ray photoelectron spectroscopy (XPS) and FT-IR using the Attenuated Total Reflectance (ATR) technique indicates that the carbonyl and sulfoxide groups are present on the surface of the functionalized material.

View Article and Find Full Text PDF

Hybrid organic-inorganic nanocomposites containing uniform distributions of metal nanoparticles have been prepared by mixing a preformed nanoparticle colloid with the precursors of a ureasil, prior to the sol-gel transition. These nanocomposites possess not only high optical quality and optical features dictated by the size and shape of the nanoparticle dopants but also a high degree of flexibility, which can largely enhance the range of applications in practical devices. The deposition of a uniform silica shell on the nanoparticle surface prior to the sol-gel transition was found to be required to maintain the colloidal stability during the process and, thus, to retain the optical properties in the final nanocomposite material.

View Article and Find Full Text PDF