Publications by authors named "Carlos J Cortes-Rodriguez"

The ankle dynamic joint stiffness (DJS), defined as the slope of the joint angle-moment plot, measures the resistance of the ankle joint to movement when the foot is in contact with the ground. DJS helps to stabilize the ankle joint, and its characterization helps to identify gait pathology and assist foot prosthesis design. This study analyzes the available gait dynamics data to obtain ankle DJS parameters for population groups according to age, gender, and gait speed for overground and treadmill walking.

View Article and Find Full Text PDF

It has been proposed that eye movements could be related to glaucoma development. This research aimed to compare the impact of intraocular pressure (IOP) versus horizontal duction on optic nerve head (ONH) strains. Thus, a tridimensional finite element model of the eye including the three tunics of the eye, all of the meninges, and the subarachnoid space (SAS) was developed using a series of medical tests and anatomical data.

View Article and Find Full Text PDF

Introduction: The objective of this study was to compare the mechanical and structural properties of the nickel-titanium (Ni-Ti) alloy already used in endodontics with titanium-molybdenum (Ti-Mo) and titanium-niobium (Ti-Nb) alloys to determine if these can be suggested in the manufacture of endodontic files.

Methods And Materials: Orthodontic wires made of the different alloys were used. The previously mentioned alloys were characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and torsion tests.

View Article and Find Full Text PDF

Biofabrication is a rapidly evolving field whose main goal is the manufacturing of three-dimensional (3D) cell-laden constructs that closely mimic tissues and organs. Despite recent advances on materials and techniques directed toward the achievement of this goal, several aspects such as tissue vascularization and prolonged cell functionality are limiting bench-to-bedside translation. Extrusion-based 3D bioprinting has been devised as a promising biofabrication technology to overcome these limitations, due to its versatility and wide availability.

View Article and Find Full Text PDF

Despite the wide use of scaffolds with spherical pores in the clinical context, no studies are reported in the literature that optimize the micro-architecture dimensions of such scaffolds to maximize the amounts of neo-formed bone. In this study, a mechanobiology-based optimization algorithm was implemented to determine the optimal geometry of scaffolds with spherical pores subjected to both compression and shear loading. We found that these scaffolds are particularly suited to bear shear loads; the amounts of bone predicted to form for this load type are, in fact, larger than those predicted in other scaffold geometries.

View Article and Find Full Text PDF

By combining load adaptive algorithms with mechanobiological algorithms, a computational framework was developed to design and optimize the microarchitecture of irregular load adapted scaffolds for bone tissue engineering. Skeletonized cancellous bone-inspired lattice structures were built including linear fibers oriented along the internal flux of forces induced by the hypothesized boundary conditions. These structures were then converted into solid finite element models, which were optimized with mechanobiology-based optimization algorithms.

View Article and Find Full Text PDF

Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries.

View Article and Find Full Text PDF

The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites.

View Article and Find Full Text PDF

Nickel-Titanium rotary files are a technological development that enables dentists to prepare irregularly shaped root canals without altering them. Unfortunately, these files may fracture without any prior visible warning signs. The aim of this study was to perform a theoretical evaluation of the mechanical behaviour of Mtwo Nickel-Titanium rotary files for endodontics, in order to determine which of the files in the basic series are most likely to fracture.

View Article and Find Full Text PDF