Dogs are the main source of human cystic echinococcosis. An oral vaccine would be an important contribution to control programs in endemic countries. We conducted two parallel experimental trials in Morocco and Tunisia of a new oral vaccine candidate against Echinococcus granulosus in 28 dogs.
View Article and Find Full Text PDFLive Salmonella vaccines are limited in use by the inherent toxicity of the lipopolysaccharide. The waaN gene encodes a myristyl transferase required for the secondary acylation of lipid A in lipopolysaccharide. A waaN mutant exhibits reduced induction of the inflammatory cytokines associated with lipopolysaccharide toxicity.
View Article and Find Full Text PDFEvidence has emerged that both vertebrates and invertebrates share innate immune pathways involved in the recognition of and the response to micro-organisms, including bacteria and their products. As a consequence, particular degenerate products of bacteria can stimulate and modulate immune responses and influence acquired immunity and, potentially, protection against disease. New knowledge in this field is beginning to explain how vaccine adjuvants work and will facilitate the future development of novel adjuvants and vaccines.
View Article and Find Full Text PDFSalmonella live vaccine strains harbouring mutations in htrA, a stress protein gene, display increased susceptibility to oxidative stress in vitro. This is believed to be connected to their reduced virulence, perhaps due to impaired survival inside phagocytes, although this has never been formally proven. We report that the in vitro phenotype of increased susceptibility to oxidative stress of Salmonella typhimurium htrA mutants newly prepared by transduction is rapidly lost on subculture, with the mutants becoming as resistant as the parent for reasons that remain unclear.
View Article and Find Full Text PDFWe have identified Salmonella invasion protein C (SipC) as a target antigen for CD4 T cell recognition in mice infected with Salmonella typhimurium. SipC is a product of the type III secretion system encoded by S. typhimurium pathogenicity island 1.
View Article and Find Full Text PDFMicrobiology (Reading)
January 1999
The 19 kDa carboxy-terminal domain of Plasmodium yoelii merozoite surface protein-1 (MSP1(19)) was expressed in Salmonella vaccine strains as a carboxy-terminal fusion to fragment C of tetanus toxin (TetC). This study demonstrates that antibodies that recognize disulphide-dependent conformational epitopes in native MSP1 react with the TetC-MSP1(19) fusion protein expressed in Salmonella. The proper folding of MSP1(19) polypeptide is dependent on both the Salmonella host strain and the protein to which the MSP1(19) polypeptide is fused.
View Article and Find Full Text PDF