Publications by authors named "Carlos Henriquez-Olguin"

Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle.

View Article and Find Full Text PDF

Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans.

View Article and Find Full Text PDF

Context: Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve model translation to humans. However, the impact of housing temperature on the ability of wheel running exercise training to rescue the detrimental effect of diet-induced obese mice is currently not fully understood.

Objective: To investigate how housing temperature affects muscle metabolism in obese mice with regard to calcium handling and exercise training (ET) adaptations in skeletal muscle, and benefits of ET on adiposity and glucometabolic parameters.

View Article and Find Full Text PDF

Striated muscle cells, encompassing cardiac myocytes and skeletal muscle fibers, are fundamental to athletic performance, facilitating blood circulation and coordinated movement through contraction. Despite their distinct functional roles, these muscle types exhibit similarities in cytoarchitecture, protein expression, and excitation-contraction coupling. Both muscle types also undergo molecular remodeling in energy metabolism and cell size in response to acute and repeated exercise stimuli to enhance exercise performance.

View Article and Find Full Text PDF

Aim: The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM).

Methods: Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg).

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear.

View Article and Find Full Text PDF

Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems.

View Article and Find Full Text PDF

The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations.

View Article and Find Full Text PDF
Article Synopsis
  • The molecular mechanisms involved in skeletal muscle glucose uptake offer a potential way to address insulin resistance, particularly in conditions like obesity, diabetes, and cancer.
  • Rho guanine dissociation inhibitor α (RhoGDIα) plays a critical role in regulating insulin sensitivity by inhibiting the Rho GTPase Rac1, which is crucial for glucose transporter GLUT4 translocation in muscle cells.
  • Increased levels of RhoGDIα in the muscle of insulin-resistant individuals suggest its significant impact on insulin sensitivity and overall glucose regulation, positioning it as a target for future pharmacological treatments.
View Article and Find Full Text PDF

Background: Metabolic dysfunction and cachexia are associated with poor cancer prognosis. With no pharmacological treatments, it is crucial to define the molecular mechanisms causing cancer-induced metabolic dysfunction and cachexia. Adenosine monophosphate-activated protein kinase (AMPK) connects metabolic and muscle mass regulation.

View Article and Find Full Text PDF

Microtubules serve as tracks for long-range intracellular trafficking of glucose transporter 4 (GLUT4), but the role of this process in skeletal muscle and insulin resistance is unclear. Here, we used fixed and live-cell imaging to study microtubule-based GLUT4 trafficking in human and mouse muscle fibers and L6 rat muscle cells. We found GLUT4 localized on the microtubules in mouse and human muscle fibers.

View Article and Find Full Text PDF
Article Synopsis
  • The transcription of biological programs that control cell, tissue, and organ plasticity is not well understood, particularly regarding the role of transcription factors and coregulators.
  • PGC-1α is identified as a key regulator of adaptive transcription, with its C-terminal domain crucial for binding RNAs and forming multiprotein complexes involved in gene transcription and RNA processing.
  • This study reveals that PGC-1α helps orchestrate active transcription through liquid-liquid phase separation in nuclear compartments, particularly in skeletal muscle, offering insights into how transcriptional control supports metabolic adaptations in tissues.
View Article and Find Full Text PDF

High-intensity muscle contractions (HiMCs) are known to increase c-Myc expression that is known to stimulate ribosome biogenesis and protein synthesis in most cells. However, although c-Myc mRNA transcription and c-Myc mRNA translation have been shown to be upregulated following resistance exercise concomitantly with increased ribosome biogenesis, this connection has not been tested directly. We investigated the effect of adeno-associated virus (AAV)-mediated c-Myc overexpression, with or without fasting or percutaneous electrical stimulation-induced HiMC, on ribosome biogenesis and protein synthesis in adult mouse skeletal muscles.

View Article and Find Full Text PDF

Key Points: Tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) in mouse does not affect whole-body energy substrate metabolism. AXIN1 imKO does not affect AICAR or insulin-stimulated glucose uptake in adult skeletal muscle. AXIN1 imKO does not affect adult skeletal muscle AMPK or mTORC1 signalling during AICAR/insulin/amino acid incubation, contraction and exercise.

View Article and Find Full Text PDF

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control (CON) women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle, improving glucose uptake and metabolism in both healthy individuals and patients with type 2 diabetes. In the current study, lean hyperandrogenic women with PCOS ( = 9) and healthy CON women ( = 9) completed 14 weeks of controlled and supervised exercise training.

View Article and Find Full Text PDF

Key Points: AMP-activated protein kinase (AMPK)-dependent Raptor Ser792 phosphorylation does not influence mechanistic target of rapamycin complex 1 (mTORC1)-S6K1 activation by intense muscle contraction. α -AMPK activity-deficient mice have lower contraction-stimulated protein synthesis. Increasing glycogen activates mTORC1-S6K1.

View Article and Find Full Text PDF

Objective: Exercise is a cornerstone in the management of skeletal muscle insulin-resistance. A well-established benefit of a single bout of exercise is increased insulin sensitivity for hours post-exercise in the previously exercised musculature. Although rodent studies suggest that the insulin-sensitization phenomenon involves enhanced insulin-stimulated GLUT4 cell surface translocation and might involve intramuscular redistribution of GLUT4, the conservation to humans is unknown.

View Article and Find Full Text PDF

The small molecule kinase inhibitor SBI-0206965 was originally described as a specific inhibitor of ULK1/2. More recently, it was reported to effectively inhibit AMPK and several studies now report its use as an AMPK inhibitor. Currently, we investigated the specificity of SBI-0206965 in incubated mouse skeletal muscle, measuring the effect on analog 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated AMPK-dependent glucose transport and insulin-stimulated AMPK-independent glucose uptake.

View Article and Find Full Text PDF

Exercise training is a powerful means to combat metabolic diseases. Mice are extensively used to investigate the benefits of exercise, but mild cold stress induced by ambient housing temperatures may confound translation to humans. Thermoneutral housing is a strategy to make mice more metabolically similar to humans but its effects on exercise adaptations are unknown.

View Article and Find Full Text PDF

Exercise imposes cellular stress on contracting skeletal muscle fibers, forcing them to complete molecular adaptations to maintain homeostasis. There is mounting evidence that redox signaling by reactive oxygen species (ROS) is vital for skeletal muscle exercise adaptations across many different exercise modalities. The study of redox signaling is moving towards a growing appreciation that these ROS do not signal in a global unspecific way, but rather elicit their effects in distinct subcellular compartments.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer directs glucose away from muscle and fat tissue, making tumors grow faster and leading to higher mortality in diabetic patients.
  • The study used mice with lung cancer to measure glucose uptake and insulin response, finding significant reductions in these processes in tumor-bearing mice.
  • Results highlight that cancer disrupts multiple metabolic functions, including how insulin lowers blood sugar, glucose tolerance, and overall glucose production in the liver.
View Article and Find Full Text PDF

Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but whether myocellular ROS production is stimulated by in vivo exercise to control metabolism is unclear. Here, we combined exercise in humans and mice with fluorescent dyes, genetically-encoded biosensors, and NADPH oxidase 2 (NOX2) loss-of-function models to demonstrate that NOX2 is the main source of cytosolic ROS during moderate-intensity exercise in skeletal muscle.

View Article and Find Full Text PDF

Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle.

View Article and Find Full Text PDF

Background: Skeletal muscle wasting is often associated with insulin resistance. A major regulator of muscle mass is the transforming growth factor β (TGF-β) superfamily, including activin A, which causes atrophy. TGF-β superfamily ligands also negatively regulate insulin-sensitive proteins, but whether this pathway contributes to insulin action remains to be determined.

View Article and Find Full Text PDF

A periodized (14 days on/14 days off) 5% low protein-high carbohydrate (pLPHC) diet protects against weight gain, improves glucose tolerance in mice and interacts with concurrent voluntary activity wheel training on several parameters including weight maintenance and liver FGF21 secretion. The gut microbiome (GM) responds to both diet and exercise and may influence host metabolism. This study compared the cecal GM after a 13.

View Article and Find Full Text PDF