Publications by authors named "Carlos Garcia-Nunez"

In-situ synthesized hollow transition metal chalcogenides have gained significant attention on account of their excellent electrochemical properties. Here, Ni-doped V-MOF (V(Ni)-MOF) nanorod arrays as precursor are first grown on nickel foam (NF). Subsequently, the nanorod arrays are converted into V(NiCo)-OH hollow nanotube arrays with cross-linked nanosheets by Co etching.

View Article and Find Full Text PDF

Motion artifacts can be a significant noise source in biomagnetic measurements when magnetic sensors are not separated from the signal source. In ambient environments, motion artifacts can be up to ten times stronger than the desired signals, varying with environmental conditions. This study evaluates the variability of these artifacts and the effectiveness of a gradiometer in reducing them in such settings.

View Article and Find Full Text PDF

Coating thermal noise (CTN) in amorphous coatings is a drawback hindering their application in precision experiments such as gravitational wave detectors (GWDs). Mirrors for GWDs are Bragg's reflectors consisting of a bilayer-based stack of high- and low-refractive-index materials showing high reflectivity and low CTN. In this paper, we report the characterization of morphological, structural, optical, and mechanical properties of high-index materials such as scandium sesquioxide and hafnium dioxide and a low-index material such as magnesium fluoride deposited by plasma ion-assisted electron beam evaporation.

View Article and Find Full Text PDF

This work presents the characterization of the optical and mechanical properties of thin films based on ( ) ( ) mixed oxides deposited by microwave plasma assisted co-sputtering, including post-annealing treatments. The deposition of low mechanical loss materials (3×10) with a high refractive index (1.93) while maintaining low processing costs was achieved and the following trends were demonstrated: The energy band gap increased as the concentration was increased in the mixture, and the disorder constant decreased when the annealing temperatures increased.

View Article and Find Full Text PDF

Mechanical manipulation of nanowires (NWs) for their integration in electronics is still problematic because of their reduced dimensions, risking to produce mechanical damage to the NW structure and electronic properties during the assembly process. In this regard, contactless NW manipulation based methods using non-uniform electric fields, like dielectrophoresis (DEP) are usually much softer than mechanical methods, offering a less destructive alternative for integrating nanostructures in electronic devices. Here, we report a feasible and reproducible dielectrophoretic method to assemble single GaAs NWs (with radius 35-50 nm, and lengths 3-5 μm) on conductive electrodes layout with assembly yields above 90% per site, and alignment yields of 95%.

View Article and Find Full Text PDF

In this work, we have developed a contact-printing system to efficiently transfer the bottom-up and top-down semiconductor nanowires (NWs), preserving their as-grown features with a good control over their electronic properties. In the close-loop configuration, the printing system is controlled with parameters such as contact pressure and sliding speed/stroke. Combined with the dry pre-treatment of the receiver substrate, the system prints electronic layers with high NW density (7 NWs/μm for bottom-up ZnO and 3 NWs/μm for top-down Si NWs), NW transfer yield and reproducibility.

View Article and Find Full Text PDF

Energy autonomy is critical for wearable and portable systems and to this end storage devices with high-energy density are needed. This work presents high-energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene-graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.

View Article and Find Full Text PDF

To study the acclimation responses of the leaves of saplings of six tree species when changed to low or high levels of irradiance, we carried out a light exposure experiment. Species representative of contrasting shade tolerance groups were identified across a light gradient in the understorey of a Venezuelan Andean cloud forest. Measured traits included gas exchange, chlorophyll fluorescence, and morphoanatomical, biochemical and optical properties.

View Article and Find Full Text PDF

The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices.

View Article and Find Full Text PDF

This work reports a temperature-assisted dip-coating method for self-assembly of silica (SiO) microspheres/nanospheres (SPs) as monolayers over large areas (∼cm). The area over which self-assembled monolayers (SAMs) are formed can be controlled by tuning the suspension temperature (T), which allows precise control over the meniscus shape. Furthermore, the formation of periodic stripes of SAMs, with excellent dimensional control (stripe width and stripe-to-stripe spacing), is demonstrated using a suitable set of dip-coating parameters.

View Article and Find Full Text PDF

This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane.

View Article and Find Full Text PDF