Primary treatment for estrogen receptor-positive (ER+) breast cancer is endocrine therapy. However, substantial evidence indicates a continued role for ER signaling in tumor progression. Selective estrogen receptor degraders (SERD), such as fulvestrant, induce effective ER signaling inhibition, although clinical studies with fulvestrant report insufficient blockade of ER signaling, possibly due to suboptimal pharmaceutical properties.
View Article and Find Full Text PDFPurpose: Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycoprotein that has limited expression in normal adult tissues, but is overexpressed in carcinomas of the gastrointestinal tract, the genitourinary and respiratory systems, and breast cancer. As such, CEACAM5 is an attractive target for antibody-based therapies designed to selectively deliver cytotoxic drugs to certain epithelial tumors. Here, we describe preclinical data for a novel antibody-drug conjugate (ADC), SAR408701, which consists of an anti-CEACAM5 antibody (SAR408377) coupled to a maytansinoid agent DM4 via a cleavable linker.
View Article and Find Full Text PDFThe therapeutic potential of interfering with dysregulated proteins by inducing its selective degradation has been pursued using different mechanisms. In the present article, we review representative examples of monovalent protein-degraders that, contrary to the proteolysis targeting chimeras, achieve target degradation without displaying recognition motifs for the recruitment of E3 ubiquitin ligases. We also highlight new technologies and assays that may brought to bear on the discovery of common elements that could predict and enable the selective degradation of pathogenic targets by monovalent protein-degraders.
View Article and Find Full Text PDFJ Med Chem
January 2020
More than 75% of breast cancers are estrogen receptor alpha (ERα) positive (ER+), and resistance to current hormone therapies occurs in one-third of ER+ patients. Tumor resistance is still ERα-dependent, but mutations usually confer constitutive activation to the hormone receptor, rendering ERα modulator drugs such as tamoxifen and aromatase inhibitors ineffective. Fulvestrant is a potent selective estrogen receptor degrader (SERD), which degrades the ERα receptor in drug-resistant tumors and has been approved for the treatment of hormone-receptor-positive metastatic breast cancer following antiestrogen therapy.
View Article and Find Full Text PDFActivating KRAS mutations are major oncogenic drivers in multiple tumor types. Synthetic lethal screens have previously been used to identify targets critical for the survival of KRAS mutant cells, but their application to drug discovery has proven challenging, possibly due in part to a failure of monolayer cultures to model tumor biology. Here, we report the results of a high-throughput synthetic lethal screen for small molecules that selectively inhibit the growth of KRAS mutant cell lines in soft agar.
View Article and Find Full Text PDFClass IA PI3K pathway activation resulting from PTEN deficiency has been associated with lack of sensitivity of melanoma to BRAF kinase inhibitors. Although previous studies have shown synergistic activity when pan-PI3K inhibitors were combined with MAPK inhibitors in the treatment of melanoma exhibiting concurrent genetic abnormalities, overlapping adverse events in patients limit optimal dosing and clinical application. With the aim of specifically targeting PTEN-deficient cancers and minimizing the potential for on-target toxicity when inhibiting multiple PI3K isoforms, we developed a program to discover PI3Kβ-selective kinase inhibitors and identified SAR260301 as a potent PI3Kβ-selective, orally available compound, which is now in clinical development.
View Article and Find Full Text PDFHerein, we report a novel and general method, lead optimization attrition analysis (LOAA), to benchmark two distinct small-molecule lead series using a relatively unbiased, simple technique and commercially available software. We illustrate this approach with data collected during lead optimization of two independent oncology programs as a case study. Easily generated graphics and attrition curves enabled us to calibrate progress and support go/no go decisions on each program.
View Article and Find Full Text PDFUnlabelled: Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRNAs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines.
View Article and Find Full Text PDFMechanisms of unassisted delivery of RNA therapeutics, including inhibitors of microRNAs, remain poorly understood. We observed that the hepatocellular carcinoma cell line SKHEP1 retains productive free uptake of a miR-21 inhibitor (anti-miR-21). Uptake of anti-miR-21, but not a mismatch (MM) control, induces expression of known miR-21 targets (DDAH1, ANKRD46) and leads to dose-dependent inhibition of cell growth.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) consist of cytotoxic drugs covalently linked to monoclonal antibodies directed to antigens differentially overexpressed in tumor cells. These loaded antibodies are expected to selectively deliver lethal cargoes to tumor cells and provide sustained clinical benefit to pre-selected cancer patients while, at the same time, minimizing systemic toxicity. Although on-target adverse events are not completely avoided and the true efficacy of these innovative agents still requires further clarification, proof-of-concept has already been achieved in clinical settings with immunoconjugates containing calicheamicin, auristatin or maytansine-based cytotoxic payloads.
View Article and Find Full Text PDFJ Med Chem
January 2015
Vps34 (the human class III phosphoinositide 3-kinase) is a lipid kinase involved in vesicle trafficking and autophagy and therefore constitutes an interesting target for cancer treatment. Because of the lack of specific Vps34 kinase inhibitors, we aimed to identify such compounds to further validate the role of this lipid kinase in cancer maintenance and progression. Herein, we report the discovery of a series of tetrahydropyrimidopyrimidinone derivatives.
View Article and Find Full Text PDFVps34 is a phosphoinositide 3-kinase (PI3K) class III isoform that has attracted major attention over the recent years because of its role in autophagy. Herein we describe the biological characterization of SAR405, which is a low-molecular-mass kinase inhibitor of Vps34 (KD 1.5 nM).
View Article and Find Full Text PDFThe field of antibody-drug conjugates (ADCs) has gained significant momentum after the recent regulatory approval of two ADCs, and significant research efforts are directed to identify more effective payloads and simplify current manufacturing challenges.
View Article and Find Full Text PDFPostchemotherapy relapse presents a major unmet medical need in acute myeloid leukemia (AML), where treatment options are limited. CD25 is a leukemic stem cell marker and a conspicuous prognostic marker for overall/relapse-free survival in AML. Rare occurrence of genetic alterations among PIM family members imposes a substantial hurdle in formulating a compelling patient stratification strategy for the clinical development of selective PIM inhibitors in cancer.
View Article and Find Full Text PDFInhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors.
View Article and Find Full Text PDFSomatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2014
In our continuous efforts to identify and develop novel targeted cancer treatments, a new morpholino-thiazole scaffold active against PI3Kβ has been identified. This Letter reports the optimization of this compound class to develop PI3Kβ isoform-selective inhibitors with suitable pharmacological properties.
View Article and Find Full Text PDFCompelling molecular biology publications have reported the implication of phosphoinositide kinase PI3Kβ in PTEN-deficient cell line growth and proliferation. These findings supported a scientific rationale for the development of PI3Kβ-specific inhibitors for the treatment of PTEN-deficient cancers. This paper describes the discovery of 2-[2-(2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-3H-pyrimidin-4-one (7) and the optimization of this new series of active and selective pyrimidone indoline amide PI3Kβ inhibitors.
View Article and Find Full Text PDFPRP4 kinase is known for its roles in regulating pre-mRNA splicing and beyond. Therefore, a wider spectrum of PRP4 kinase substrates could be expected. The role of PRP4 kinase in cancer is also yet to be fully elucidated.
View Article and Find Full Text PDFBioorg Med Chem Lett
May 2013
A growing number of the elements identified in intracellular signaling events that affect cell growth and transformation are proteins that physically interact with each other via domains or specifically recognized amino acid sequences. Some of these intracellular protein-protein interactions are attractive targets for anticancer targeted therapy, but progress in this field has been compromised by the paucity of compounds with suitable biological profiles and pharmacological properties. This Letter covers salient achievements in the identification and development of inhibitors of the p53-hdm2 protein-protein interaction, and highlights different screening techniques and structure-based design approaches that may be brought to bear on the discovery and development of inhibitors of other therapeutically relevant intracellular protein-protein interactions.
View Article and Find Full Text PDFEmerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model.
View Article and Find Full Text PDFUnlabelled: Patient stratification biomarkers that enable the translation of cancer genetic knowledge into clinical use are essential for the successful and rapid development of emerging targeted anticancer therapeutics. Here, we describe the identification of patient stratification biomarkers for NVP-BGJ398, a novel and selective fibroblast growth factor receptor (FGFR) inhibitor. By intersecting genome-wide gene expression and genomic alteration data with cell line-sensitivity data across an annotated collection of cancer cell lines called the Cancer Cell Line Encyclopedia, we show that genetic alterations for FGFR family members predict for sensitivity to NVP-BGJ398.
View Article and Find Full Text PDFThe pan-phosphoinositide 3-kinase (PI3K) inhibitor BKM120 was found, at high concentrations, to cause cell death in various cellular systems, irrespective of their level of PI3K addiction. Transcriptional and biochemical profiling studies were used to identify the origin of these unexpected and apparently PI3K-independent effects. At 5- to 10-fold, the concentration needed to half-maximally inhibit PI3K signaling.
View Article and Find Full Text PDFNVP-AEW541, a specific ATP-competitive inhibitor of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase, has been reported to interfere with tumor growth in various tumor transplantation models. We have assessed the efficacy of NVP-AEW541 in repressing tumor growth and tumor progression in the Rip1Tag2 transgenic mouse model of pancreatic β-cell carcinogenesis. In addition, we have tested NVP-AEW541 in Rip1Tag2;RipIGF1R double-transgenic mice which show accelerated tumor growth and increased tumor malignancy compared with Rip1Tag2 single-transgenic mice.
View Article and Find Full Text PDF