Publications by authors named "Carlos G Juan"

Article Synopsis
  • The work introduces a microwave sensor designed to measure three properties of solid samples: dielectric permittivity, loss tangent, and thickness, using a setup with three resonators sandwiching the sample.
  • The interaction between the sample and resonators alters the sensor's electrical responses, which is analyzed to extract the desired properties.
  • The proposed model was validated through 990 simulations and experimental tests with reference samples, demonstrating effective calibration and accurate multi-parameter sensing.
View Article and Find Full Text PDF

A proof-of-concept of a microwave imaging system for the fast detection of abdominal aortic aneurysms is shown. This experimental technology seeks to overcome the factors hampering the fast screening for these aneurysms with the usual equipment, such as high cost, long-time operation or hazardous exposure to chemical substances. The hardware system is composed of 16 twin antennas mastered by a microcontroller through a switching network, which connects the antennas to the measurement instrument for sequential measurement.

View Article and Find Full Text PDF

An Augmented Reality (AR) system based on the holographic projection of the relevant anatomic structures is proposed for auxiliary visualization during surgeries. The current two-dimensional visualization systems require the surgeons to mentally extract the associated three-dimensional information during the interventions, which entails risks and complications. This work shows an AR holographic projection system for real-time three-dimensional representation of the relevant surgical information, thus overcoming this problem.

View Article and Find Full Text PDF

Deficient visualization in minimally invasive surgery often causes misperceptions, which can lead to an increase of iatrogenic lesions and complications. This is especially critical for novice surgeons, who are prone to adopt inadequate switching gaze strategies, thereby increasing the chance of unforeseen complications. In this paper the use of an additional computer-aided vision system was tested for improvement of the reaction of the surgeons to unforeseen complications.

View Article and Find Full Text PDF

This work introduces a microwave-based system able to detect tumours in breast phantoms in a non-invasive way. The data acquisition system is composed of a hardware system which involves high-frequency components (antennas, switches and cables), a microcontroller, a vector network analyser used as measurement instrument and a computer devoted to the control and automation of the operation of the system. Concerning the software system, the computer runs a Python script which is in charge of mastering and automatising all the required stages for the data acquisition, from initialisation of the hardware system to performing and saving the measurements.

View Article and Find Full Text PDF

A radio frequency (RF)-based system for surgical navigation is presented. Surgical navigation technologies are widely used nowadays for aiding the surgical team with many interventions. However, the currently available options still pose considerable limitations, such as line-of-sight occlusion prevention or restricted materials and equipment allowance.

View Article and Find Full Text PDF

A portable device for noninvasive blood glucose monitoring is presented. The device is based on a microwave open-loop microstrip resonator, acting as glucose sensor, following the results of a previous study. This work shows the design and development of the driving electronics, signal generation system, data processing, measurement setup and graphical user interface, to integrate the resonator into a device suitable for further experimentation in clinical scenarios.

View Article and Find Full Text PDF

Blood pressure wave monitoring provides interesting information about the patient's cardiovascular function. For this reason, this article proposes a non-invasive device capable of capturing the vibrations (pressure waves) produced by the carotid artery by means of a pressure sensor encapsulated in a closed dome filled with air. When the device is placed onto the outer skin of the carotid area, the vibrations of the artery will exert a deformation in the dome, which, in turn, will lead to a pressure increase in its inner air.

View Article and Find Full Text PDF

Three microwave sensors are used to track the glucose level of different human blood plasma solutions. In this paper, the sensors are evaluated as glucose trackers in a context close to real human blood. Different plasma solutions sets were prepared from a human blood sample at several added glucose concentrations up to 10 wt%, adding also ascorbic acid and lactic acid at different concentrations.

View Article and Find Full Text PDF

Self-management of blood glucose level is part and parcel of diabetes treatment, which involves invasive, painful, and uncomfortable methods. A proper non-invasive blood glucose monitor (NIBGM) is therefore desirable to deal better with it. Microwave resonators can potentially be used for such a purpose.

View Article and Find Full Text PDF

New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch.

View Article and Find Full Text PDF