Publications by authors named "Carlos G Agudelo"

A lab-on-a-chip device with a knot shaped microfluidic network is presented to enable trapping of single pollen grains at the entrances of a series of microchannels. This set-up serves to create identical growth conditions for serially arranged tip growing plant cells such as pollen tubes. The design consists of an inlet to introduce the pollen suspension into the chip, three outlets to evacuate excess medium or cells, a distribution chamber to guide the pollen grains toward the growth microchannels and a serial arrangement of microchannels with different geometries connected to the distribution chamber.

View Article and Find Full Text PDF

A major limitation in the study of pollen tube growth has been the difficulty in providing an in vitro testing microenvironment that physically resembles the in vivo conditions. Here we describe the development of a lab-on-a-chip (LOC) for the manipulation and experimental testing of individual pollen tubes. The design was specifically tailored to pollen tubes from Camellia japonica, but it can be easily adapted for any other species.

View Article and Find Full Text PDF

A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes.

View Article and Find Full Text PDF

Large-scale phenotyping of tip-growing cells such as pollen tubes has hitherto been limited to very crude parameters such as germination percentage and velocity of growth. To enable efficient and high-throughput execution of more sophisticated assays, an experimental platform, the TipChip, was developed based on microfluidic and microelectromechanical systems (MEMS) technology. The device allows positioning of pollen grains or fungal spores at the entrances of serially arranged microchannels equipped with microscopic experimental set-ups.

View Article and Find Full Text PDF