Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the gene.
View Article and Find Full Text PDFReplication-incompetent adeno-associated virus (AAV)-based vectors are nonpathogenic viral particles used to deliver therapeutic genes to treat multiple monogenic disorders. AAVs can elicit immune responses; thus, one challenge in AAV-based gene therapy is the presence of neutralizing antibodies against vector capsids that may prevent transduction of target cells or elicit adverse findings. We present safety findings from two 12-week studies in nonhuman primates (NHPs) with pre-existing or treatment-emergent antibodies.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2022
Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA.
View Article and Find Full Text PDFValoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype five gene therapy under investigation for the treatment of hemophilia A. Herein, we assessed the potential for germline transmission of AAV5-hFVIII-SQ in mice. Male B6.
View Article and Find Full Text PDFAdeno-associated virus (AAV)-based vectors are widely used for gene therapy, but the effect of pre-existing antibodies resulting from exposure to wild-type AAV is unclear. In addition, other poorly defined plasma factors could inhibit AAV vector transduction where antibodies are not detected. To better define the relationship between various forms of pre-existing AAV immunity and gene transfer, we studied valoctocogene roxaparvovec (BMN 270) in cynomolgus monkeys with varying pre-dose levels of neutralizing anti-AAV antibodies and non-antibody transduction inhibitors.
View Article and Find Full Text PDFA therapeutic option for monogenic disorders is gene therapy with -transduced autologous hematopoietic stem cells (HSCs). Safety or efficacy studies of -modified HSCs are conducted in humanized mouse models after ablation of the murine bone marrow and transfer of human CD34 HSCs. Engrafted human CD34 cells migrate to bone marrow and differentiate into various human hematopoietic lineages.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2015
This chapter describes various approaches for the preclinical assessment of drug-induced central nervous system (CNS) adverse effects. Traditionally, methods to evaluate CNS effects have consisted of observing and scoring behavioral responses of animals after drug is administered. Among several behavioral testing paradigms, the Irwin and the functional observational battery (FOB) are the most commonly used assays for the assessment of CNS effects.
View Article and Find Full Text PDFSeveral mutations in α4 or β2 nicotinic receptor subunits are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). One such missense mutation in the gene encoding the β2 neuronal nicotinic acetylcholine receptor (nAChR) subunit (CHRNB2) is a valine-to-leucine substitution in the second transmembrane domain at position 287 (β2VL). Previous studies indicated that the β2VL mutation in mice alters circadian rhythm consistent with sleep alterations observed in ADNFLE patients (Xu et al.
View Article and Find Full Text PDFIntroduction: A novel automated blood sampling and telemetry (ABST) system was developed to integrate pharmacokinetic (PK), pharmacodynamic (PD) and toxicology studies. The goals of this investigation were to determine: 1) optimal feeding conditions and minimal acclimation times for recording PD parameters (blood pressure, heart rate, and temperature) after animals arrived on-site; 2) stress hormone levels in ABST-housed rats; 3) the feasibility of simultaneously recording cardiovascular parameters with electroencephalogram (EEG); 4) the equivalence of renal endpoints from ABST-housed rats with those in the metabolic cage, and 5) the cardiovascular responses to baclofen.
Methods: Body weight, blood pressure, temperature, stress biomarkers, urine chemistries, renal biomarkers and responses to vehicle or baclofen (10mg/kg) were compared in awake and freely moving rats housed in the ABST system, home cage (HC) or metabolic cage.
Cell transplantation is a promising treatment strategy for many neurological disorders, including stroke, which can target multiple therapeutic mechanisms in a sustained fashion. We investigated the ability of human mesenchymal stromal cells (MSCs) and MSC-derived SB623 cells to rescue neural cells via trophic support following an in vitro stroke model. Following oxygen glucose deprivation, cortical neurons or hippocampal slices were cocultured with either MSCs or SB623 cells separated by a semiporous membrane (prohibits cell-cell contact) or with MSC- or SB623 cell-conditioned medium.
View Article and Find Full Text PDFAssessment of seizure risk traditionally occurs late in the drug discovery process using low-throughput, resource intensive in vivo assays. Such approaches do not allow sufficient time to mitigate risk by influencing chemical design. Early identification using cheaper, higher throughput assays with lower animal and compound requirements would be preferable.
View Article and Find Full Text PDFThe medial habenula (MHb) exhibits exceptionally high levels of nicotinic acetylcholine receptors (nAChRs), but it remains unclear whether all expressed nAChR subunit mRNAs are translated to form functional receptors. In particular alpha4 subunits have not been reported to have any functional role, despite strong alpha4 mRNA expression in the ventrolateral MHb. We studied a strain of knock-in mice expressing fluorescent alpha4* nAChRs (alpha4YFP), as well as a knock-in strain expressing hypersensitive alpha4* nAChRs (alpha4L9'A).
View Article and Find Full Text PDFAcetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9'A) of the nAChR alpha4 subunit; this mutation renders alpha4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice.
View Article and Find Full Text PDFWe generated a mouse line harboring an autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) mutation: the alpha4 nicotinic receptor S248F knock-in strain. In this mouse, modest nicotine doses (1-2 mg/kg) elicit a novel behavior termed the dystonic arousal complex (DAC). The DAC includes stereotypical head movements, body jerking, and forelimb dystonia; these behaviors resemble some core features of ADNFLE.
View Article and Find Full Text PDFA leucine to alanine substitution (L9'A) was introduced in the M2 region of the mouse alpha4 neuronal nicotinic acetylcholine receptor (nAChR) subunit. Expressed in Xenopus oocytes, alpha4(L9'A)beta2 nAChRs were > or =30-fold more sensitive than wild type (WT) to both ACh and nicotine. We generated knock-in mice with the L9'A mutation and studied their cellular responses, seizure phenotype, and sleep-wake cycle.
View Article and Find Full Text PDFThis study analyzes the electrophysiological cause and behavioral consequence of dopaminergic cell loss in a knockin mouse strain bearing hypersensitive nicotinic alpha4-receptor subunits ("L9'S mice"). Adult brains of L9'S mice show moderate loss of substantia nigra dopaminergic neurons and of striatal dopaminergic innervation. Amphetamine-stimulated locomotion is impaired, reflecting a reduction of dopamine stored in presynaptic vesicles.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
September 2003
Two series of knockin mouse strains have been constructed with point mutations that result in hypersensitive neuronal nicotinic acetylcholine receptors containing alpha 4- or alpha 7-subunits. The full expression of the stronger alleles produces neonatal excitotoxic lethality; however, mice with attenuated expression or milder alleles are viable, and display a range of hypersensitive responses to nicotine. To date, measurements have been made on nicotine-induced seizures, Straub tail, hypothermia, antinociception, electroencephalograms and cellular electrophysiological responses.
View Article and Find Full Text PDFMPTP is a neurotoxin thought to damage dopaminergic neurons through free radical formation. MPTP is metabolized in the brain to MPP(+), which is taken up into dopaminergic neurons via the dopamine transporter and assumed to impair mitochondrial function. We used striatal synaptosomes and telencephalic mitochondria to further investigate MPP(+) mechanism of action.
View Article and Find Full Text PDFWe studied a strain of exon replacement mice ("L9'S knock-in") whose alpha4 nicotinic receptor subunits have a leucine to serine mutation in the M2 region, 9' position (Labarca et al., 2001); this mutation renders alpha4-containing receptors hypersensitive to agonists. Nicotine induced seizures at concentrations (1 mg/kg) approximately eight times lower in L9'S than in wild-type (WT) littermates.
View Article and Find Full Text PDF