Early defibrillation by an automated external defibrillator (AED) is key for the survival of out-of-hospital cardiac arrest (OHCA) patients. ECG feature extraction and machine learning have been successfully used to detect ventricular fibrillation (VF) in AED shock decision algorithms. Recently, deep learning architectures based on 1D Convolutional Neural Networks (CNN) have been proposed for this task.
View Article and Find Full Text PDFBackground: Alternans have been associated with the development of ventricular fibrillation and its control has been proposed as antiarrhythmic strategy. However, cardiac arrhythmias are a spatiotemporal phenomenon in which multiple factors are involved (e.g.
View Article and Find Full Text PDFBackground Several metabolic conditions can cause the Brugada ECG pattern, also called Brugada phenotype (BrPh). We aimed to define the clinical characteristics and outcome of BrPh patients and elucidate the mechanisms underlying BrPh attributed to hyperkalemia. Methods and Results We prospectively identified patients hospitalized with severe hyperkalemia and ECG diagnosis of BrPh and compared their clinical characteristics and outcome with patients with hyperkalemia but no BrPh ECG.
View Article and Find Full Text PDFThe inverse problem of electrocardiography is usually analyzed during stationary rhythms. However, the performance of the regularization methods under fibrillatory conditions has not been fully studied. In this work, we assessed different regularization techniques during atrial fibrillation (AF) for estimating four target parameters, namely, epicardial potentials, dominant frequency (DF), phase maps, and singularity point (SP) location.
View Article and Find Full Text PDFEarly recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AED). AED algorithms for VF-detection are customarily assessed using Holter recordings from public electrocardiogram (ECG) databases, which may be different from the ECG seen during OHCA events. This study evaluates VF-detection using data from both OHCA patients and public Holter recordings.
View Article and Find Full Text PDFObjective: Heart rate turbulence (HRT) has been successfully explored for cardiac risk stratification. While HRT is known to be influenced by the heart rate (HR) and the coupling interval (CI), nonconcordant results have been reported on how the CI influences HRT. The purpose of this study is to investigate HRT changes in terms of CI and HR by means of an especially designed protocol.
View Article and Find Full Text PDF