Publications by authors named "Carlos F M Menck"

Article Synopsis
  • Trypanosoma cruzi, the agent responsible for Chagas disease, exhibits unique biological traits and responds to DNA damage through a specific repair pathway called transcription-coupled nucleotide excision repair (TC-NER).
  • When UV light induces DNA lesions, unresolved transcriptional stress can lead to a programmed cell death mechanism that resembles apoptosis.
  • The study reveals that the Cockayne Syndrome B protein (CSB) plays a crucial role in this process, as its overexpression increases cell death after UV exposure, while its absence confers resistance, suggesting an ATR-dependent apoptosis-like signaling in T. cruzi.
View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge.

View Article and Find Full Text PDF

Background: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies.

View Article and Find Full Text PDF

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions.

View Article and Find Full Text PDF

Purpose: To assess Meibomian gland dysfunction using meibography in patients with xeroderma pigmentosum and correlate with ocular surface changes.

Methods: This cross-sectional study evaluated patients with xeroderma pigmentosum. All patients underwent a comprehensive and standardized interview.

View Article and Find Full Text PDF

The ultraviolet (UV) component of sunlight can damage DNA. Although most solar UV is absorbed by the ozone layer, wavelengths > 300 nm (UVA and UVB bands) can reach the Earth's surface. It is essential to understand the genotoxic effects of UV light, particularly in natural environments.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation from sunlight can damage DNA, inducing mutagenesis and eventually leading to skin cancer. Topical sunscreens are used to avoid the effect of UV irradiation, but the topical application of DNA repair enzymes, such as photolyase, can provide active photoprotection by DNA recovery. Here we produced a recombinant Thermus thermophilus photolyase expressed in Escherichia coli, evaluated the kinetic parameters of bacterial growth and the kinetics and stability of the enzyme.

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) variant cells are deficient in the translesion synthesis (TLS) DNA polymerase Polη (eta). This protein contributes to DNA damage tolerance, bypassing unrepaired UV photoproducts and allowing S-phase progression with minimal delay. In the absence of Polη, backup polymerases perform TLS of UV lesions.

View Article and Find Full Text PDF

Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified.

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) is a genetic disorder caused by mutations in genes of the Nucleotide Excision Repair (NER) pathway (groups A-G) or in Translesion Synthesis DNA polymerase η (V). XP is associated with an increased skin cancer risk, reaching, for some groups, several thousand-fold compared to the general population. Here, we analyze 38 skin cancer genomes from five XP groups.

View Article and Find Full Text PDF
Article Synopsis
  • DNA-targeting agents like pradimicin-IRD show promise in cancer treatment, but their toxicity limits broader use.
  • The study utilized in silico modeling and transcriptomic analysis to examine DNA repair pathways activated in cancer cells after treatment with pradimicin-IRD, revealing its role as a DNA intercalating agent.
  • Key findings included reduced PCNA levels and specific gene expressions related to DNA repair, suggesting that pradimicin-IRD functions differently from other agents such as doxorubicin, indicating its potential for further development as an anticancer drug.
View Article and Find Full Text PDF

POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells.

View Article and Find Full Text PDF

Infection with some mucosal human papillomavirus (HPV) types is the etiological cause of cervical cancer and of a significant fraction of vaginal, vulvar, anal, penile, and head and neck carcinomas. DNA repair machinery is essential for both HPV replication and tumor cells survival suggesting that cellular DNA repair machinery may play a dual role in HPV biology and pathogenesis. Here, we silenced genes involved in DNA Repair pathways to identify genes that are essential for the survival of HPV-transformed cells.

View Article and Find Full Text PDF

Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are looking for new ways to treat skin cancer, especially melanoma, and studied special proteins called opsins which might help reduce tumor growth.
  • They found that melanoma cells grow slower when a specific protein called Opn4 is not present, leading to a stronger immune response against the cancer.
  • Data from experiments and a cancer database shows that lower levels of MITF and Opn4 in melanoma can slow down cell growth and help the immune system fight the tumor better.
View Article and Find Full Text PDF

Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These photolesions interfere with essential cellular processes by blocking transcription and replication polymerases, and may induce skin inflammation, hyperplasia and cell death eventually contributing to skin aging, effects mediated mainly by keratinocytes.

View Article and Find Full Text PDF

The DNA fiber assay is a simple and robust method for the analysis of replication fork dynamics, based on the immunodetection of nucleotide analogs that are incorporated during DNA synthesis in human cells. However, this technique has a limited resolution of a few thousand kilobases. Consequently, post-replicative single-stranded DNA (ssDNA) gaps as small as a few hundred bases are not detectable by the standard assay.

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) is a rare genetic condition in which exposure to sunlight leads to a high tumor incidence due to defective DNA repair machinery. Herein, we investigated seven patients clinically diagnosed with XP living in a small city, Montanhas (Rio Grande do Norte), in the Northeast region of Brazil. We performed high-throughput sequencing and, surprisingly, identified two different mutated genes.

View Article and Find Full Text PDF

Skin melanocytes harbor a complex photosensitive system comprised of opsins, which were shown, in recent years, to display light- and thermo-independent functions. Based on this premise, we investigated whether melanopsin, OPN4, displays such a role in normal melanocytes. In this study, we found that murine melanocytes displayed a faster proliferation rate compared to melanocytes.

View Article and Find Full Text PDF

For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer).

View Article and Find Full Text PDF

Cockayne syndrome (CS) is a rare, autosomal genetic disorder characterized by premature aging-like features, such as cachectic dwarfism, retinal atrophy, and progressive neurodegeneration. The molecular defect in CS lies in genes associated with the transcription-coupled branch of the nucleotide excision DNA repair (NER) pathway, though it is not yet clear how DNA repair deficiency leads to the multiorgan dysfunction symptoms of CS. In this work, we used a mouse model of severe CS with complete loss of NER (), which recapitulates several CS-related phenotypes, resulting in premature death of these mice at approximately 20 weeks of age.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers compared mutagenesis patterns in NER-proficient human skin cells to XP-C-deficient cells (which can't repair DNA) after UVB exposure, finding higher mutation rates in the XP-C cells, particularly C>T transitions.
  • * The study's results mirror mutation patterns found in human skin cancer tumors, suggesting it could inform our understanding of how mutations occur in both affected and unaffected individuals.
View Article and Find Full Text PDF

Although active immunotherapies are effective strategies to induce activation of CD8 T cells, advanced stage tumors require further improvements for efficient control. Concerning the burden of cancer-related to Human papillomavirus (HPV), particularly the high incidence and mortality of cervical cancer, our group developed an approach based on a DNA vaccine targeting the HPV-16 E7 oncoprotein (pgDE7h). This immunotherapy is capable of inducing an antitumour CD8 T cell response but show only partial control of tumors in more advanced growth stages.

View Article and Find Full Text PDF