Alternative splicing (AS) in human genes is widely viewed as a mechanism for enhancing proteomic diversity. AS can also impact gene expression levels without increasing protein diversity by producing 'unproductive' transcripts that are targeted for rapid degradation by nonsense-mediated decay (NMD). However, the relative importance of this regulatory mechanism remains underexplored.
View Article and Find Full Text PDFAlternative splicing shapes the transcriptome and contributes to each cell's unique identity, but single-cell RNA sequencing (scRNA-seq) has struggled to capture the impact of alternative splicing. We previously showed that low recovery of mRNAs from single cells led to erroneous conclusions about the cell-to-cell variability of alternative splicing. Here, we present a method, Psix, to confidently identify splicing that changes across a landscape of single cells, using a probabilistic model that is robust against the data limitations of scRNA-seq.
View Article and Find Full Text PDFSingle-cell RNA sequencing provides powerful insight into the factors that determine each cell's unique identity. Previous studies led to the surprising observation that alternative splicing among single cells is highly variable and follows a bimodal pattern: a given cell consistently produces either one or the other isoform for a particular splicing choice, with few cells producing both isoforms. Here, we show that this pattern arises almost entirely from technical limitations.
View Article and Find Full Text PDFBackground: Determining whether two DNA samples originate from the same individual is difficult when the amount of retrievable DNA is limited. This is often the case for ancient, historic, and forensic samples. The most widely used approaches rely on amplification of a defined panel of multi-allelic markers and comparison to similar data from other samples.
View Article and Find Full Text PDF