J Cell Biochem
April 2005
The vitamin D receptor (VDR) binds to and mediates the effects of the 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) hormone to alter gene transcription. A newly recognized VDR ligand is the carcinogenic bile acid, lithocholic acid (LCA). We demonstrate that, in HT-29 colon cancer cells, both LCA and 1,25(OH)(2)D(3) induce expression of cytochrome P450 3A4 (CYP3A4), an enzyme involved in cellular detoxification.
View Article and Find Full Text PDFThe nuclear vitamin D receptor (VDR) mediates the actions of its 1,25-dihydroxyvitamin D(3) ligand to control gene expression in terrestrial vertebrates. Prominent functions of VDR-regulated genes are to promote intestinal absorption of calcium and phosphate for bone mineralization and to potentiate the hair cycle in mammals. We report the cloning of VDR from Petromyzon marinus, an unexpected finding because lampreys lack mineralized tissues and hair.
View Article and Find Full Text PDFThe nuclear vitamin D receptor (VDR) mediates the effects of 1,25-dihydroxyvitamin D(3) (1,25D(3)) to alter intestinal gene transcription and promote calcium absorption. Because 1,25D(3) also exerts anti-cancer effects, we examined the efficacy of 1,25D(3) to induce cytochrome P450 (CYP) enzymes. Exposure of human colorectal adenocarcinoma cells (HT-29) to 10(-8)M 1,25D(3) resulted in >/=3-fold induction of CYP3A4 mRNA and protein as assessed by RT-PCR and Western blotting, respectively.
View Article and Find Full Text PDF