BMC Plant Biol
April 2024
Background: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters.
View Article and Find Full Text PDFInoculation with has promisingly increased plant yield and nutrient acquisition. The study aimed to estimate the dose of that increases yield, gas exchange, nutrition, and foliar nitrate reduction. The research was carried out in a greenhouse at Ilha Solteira, in a hydroponic system in randomized blocks with four replicates.
View Article and Find Full Text PDFExtreme environmental conditions, such as abiotic stresses (drought, salinity, heat, chilling and intense light), offer great opportunities to study how different microorganisms and plant nutrition can influence plant growth and development. The intervention of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species. Brassicaceae (Cruciferae) belongs to the monophyletic taxon and consists of around 338 genera and 3709 species worldwide.
View Article and Find Full Text PDFCadmium is a widely distributed heavy metal in agricultural soils that affects plant growth and productivity. In this context, the current study investigated the effects of different cadmium (Cd) doses (0, 25, 50, 75, and 100 mg L of CdSO) on the growth and physiological attributes of safflower ( L.) including plant height (cm), root length (cm), fresh weight (g) of root, stem, and leaves, leaf number, macro and micro-nutrients, Se, and heavy metal (Cd, Cr, and Pb) content.
View Article and Find Full Text PDFHarnessing the beneficial potential of plant growth-promoting rhizobacteria may be an alternative strategy to improve plant tolerance to drought stress. The effect of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense either alone or in combination on the plant growth and drought tolerance of soybean [Glycine max (L.) Merrill.
View Article and Find Full Text PDF