Publications by authors named "Carlos Eduardo Peixoto da Cunha"

Carvedilol (CRV) is a non-selective blocker of α and β adrenergic receptors, which has been extensively used for the treatment of hypertension and congestive heart failure. Owing to its poor biopharmaceutical properties, CRV has been incorporated into different types of drug delivery systems and this necessitates the importance of investigating their compatibility and stability. In this sense, we have investigated the applicability of several electroanalytical tools to assess CRV compatibility with lipid excipients.

View Article and Find Full Text PDF

This work details the study of the redox behavior of the drugs cyclobenzaprine (CBP), amitriptyline (AMP) and nortriptyline (NOR) through voltammetric methods and computational chemistry. Results obtained in this study show that the amine moiety of each compound is more likely to undergo oxidation at 1a at ≈ 0.69, 0.

View Article and Find Full Text PDF

Diclofenac (DIC) is a non-steroidal anti-inflammatory drug of wide use around the world. Electroanalytical methods display a high analytical potential for application in pharmaceutical samples but the drawbacks concerning electrode fouling and reproducibility are of major concern. Henceforth, the aim of this work was to propose the use of alternative low-cost carbon black (CB) and ionic liquid (IL) matrix to modify the surface of pencil graphite electrodes (PGE) in order to quantify DIC in raw materials, intermediates, and final products, as well as in stability assays of tablets.

View Article and Find Full Text PDF

Methyldopa is a catecholamine widely used in the treatment of mild to moderate hypertension whose determination in pharmaceutical formulae is of upmost importance for dose precision. Henceforth, a low-cost carbon paste electrode (CPE) consisting of graphite powder obtained from a crushed pencil stick was herein modified with nanostructured TiO₂ (TiO₂@CPE) aiming for the detection of methyldopa in pharmaceutical samples. The TiO₂-modified graphite powder was characterized by scanning electron microscopy and X-ray diffraction, which demonstrated the oxide nanostructured morphology.

View Article and Find Full Text PDF