Publications by authors named "Carlos E Santibanez-Lopez"

Scorpion toxins are relatively short cyclic peptides (<150 amino acids) that can disrupt the opening/closing mechanisms in cell ion channels. These peptides are widely studied for several reasons including their use in drug discovery. Although improvements in RNAseq have greatly expedited the discovery of new scorpion toxins, their annotation remains challenging, mainly due to their small size.

View Article and Find Full Text PDF
Article Synopsis
  • Scorpions are an ancient group of arachnids, over 400 million years old, and one of the first land-dwelling animals, but research on their evolution is limited due to the lack of genomic data.
  • This study used advanced sequencing techniques to create the first detailed chromosome-level genome assembly for the desert hairy scorpion, Hadrurus arizonensis, yielding a genome size of 2.23 Gb and reorganizing the data into nine chromosomes.
  • The assembly identified a high number of protein-coding genes and complete arthropod orthologs, making it a valuable resource for understanding scorpion evolution, arachnid relationships, and for future genomic studies.
View Article and Find Full Text PDF
Article Synopsis
  • Advanced sequencing technologies have significantly improved our understanding of higher-level relationships among arthropods, but some groups, especially those in hidden habitats, still present challenges.
  • The Solifugae, or "camel spiders," remain the only order of chelicerates without a clear phylogeny due to difficulties in accessing key morphological traits and limited molecular research.
  • A new phylogenomic study utilizing ultraconserved elements has successfully clarified solifuge relationships, revealing two main groups of New World taxa within a broader Paleotropical context, and suggesting that divergence among families occurred mostly before the Paleogene-Cretaceous extinction, influenced by continental shifts.
View Article and Find Full Text PDF

In this contribution we try to unveil the diversification process of Bothriuridae in temperate Gondwana through dated phylogenomic analyses using UCE and transcriptomics, and including in the analyses species of genera Urophonius and Cercophonius, the most closely related genera of Bothriuridae from South America and Australia respectively. Additionally we explored the hypothesis that the winter activity period of some species of Urophonius, as well as the cold environmental preferences of this genus, could be related to the climatic conditions of the time frame and area in which it evolved. Genus Urophonius was recovered as sister group to Cercophonius using amino acids and UCE.

View Article and Find Full Text PDF

Scorpions are ancient and historically renowned for their potent venom. Traditionally, the systematics of this group of arthropods was supported by morphological characters, until recent phylogenomic analyses (using RNAseq data) revealed most of the higher-level taxa to be non-monophyletic. While these phylogenomic hypotheses are stable for almost all lineages, some nodes have been hard to resolve due to minimal taxonomic sampling (e.

View Article and Find Full Text PDF

Scorpions constitute a charismatic lineage of arthropods and comprise more than 2500 described species. Found throughout various tropical and temperate habitats, these predatory arachnids have a long evolutionary history, with a fossil record that began in the Silurian. While all scorpions are venomous, the asymmetrically diverse family Buthidae harbors nearly half the diversity of extant scorpions, and all but one of the 58 species that are medically significant to humans.

View Article and Find Full Text PDF

Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida.

View Article and Find Full Text PDF

Species of camel spiders in the family Eremobatidae are an important component of arthropod communities in arid ecosystems throughout North America. Recently, research demonstrated that the evolutionary history and biogeography of the family are poorly understood. Herein we explore the biogeographic history of this group of arachnids using genome-wide single nucleotide polymorphism (SNP) data, morphology, and distribution modelling to study the eremobatid genus Eremocosta, which contains exceptionally large species distributed throughout North American deserts.

View Article and Find Full Text PDF

Chelicerate arthropods exhibit dynamic genome evolution, with ancient whole-genome duplication (WGD) events affecting several orders. Yet, genomes remain unavailable for a number of poorly studied orders, such as Opiliones (daddy-long-legs), which has hindered comparative study. We assembled the first harvestman draft genome for the species , which bears elongate, prehensile appendages, made possible by numerous distal articles called tarsomeres.

View Article and Find Full Text PDF

Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets.

View Article and Find Full Text PDF

Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies.

View Article and Find Full Text PDF

Montane species endemic to the "sky islands" of the North American southwest were significantly impacted by changing climates during the Pleistocene. We combined mitochondrial and genomic data with species distribution modelling to determine whether Aphonopelma marxi, a large tarantula from the nearby Colorado Plateau, was similarly impacted by glacial climates. Genetic analyses revealed that the species comprises three main clades that diverged in the Pleistocene.

View Article and Find Full Text PDF

Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders).

View Article and Find Full Text PDF

The miniaturized arachnid order Palpigradi has ambiguous phylogenetic affinities owing to its odd combination of plesiomorphic and derived morphological traits. This lineage has never been sampled in phylogenomic datasets because of the small body size and fragility of most species, a sampling gap of immediate concern to recent disputes over arachnid monophyly. To redress this gap, we sampled a population of the cave-inhabiting species from Slovakia and inferred its placement in the phylogeny of Chelicerata using dense phylogenomic matrices of up to 1450 loci, drawn from high-quality transcriptomic libraries and complete genomes.

View Article and Find Full Text PDF

Scorpion toxins are thought to have originated from ancestral housekeeping genes that underwent diversification and neofunctionalization, as a result of positive selection. Our understanding of the evolutionary origin of these peptides is hindered by the patchiness of existing taxonomic sampling. While recent studies have shown phylogenetic inertia in some scorpion toxins at higher systematic levels, evolutionary dynamics of toxins among closely related taxa remain unexplored.

View Article and Find Full Text PDF

The Neartic family Vaejovidae (Scorpiones: Chactoidea) has long been treated as a diverse and systematically cohesive group of scorpions, but its monophyly and relationship to other scorpion families have historically been questioned. Morphological data have supported its monophyly and a variety of phylogenetic placements within the superfamily Chactoidea. Recent phylogenomic analyses have instead recovered vaejovids as polyphyletic (albeit with minimal taxonomic sampling) and Chactoidea as paraphyletic.

View Article and Find Full Text PDF

Scorpions are predator arachnids of ancient origin and worldwide distribution. Two scorpion species, Vaejovis smithi and Centruroides limpidus, were found to harbor two different Mollicutes phylotypes: a Scorpion Mycoplasma Clade (SMC) and Scorpion Group 1 (SG1). Here we investigated, using a targeted gene sequencing strategy, whether these Mollicutes were present in 23 scorpion morphospecies belonging to the Vaejovidae, Carboctonidae, Euscorpiidae, Diplocentridae, and Buthidae families.

View Article and Find Full Text PDF

Scorpions have evolved a variety of toxins with a plethora of biological targets, but characterizing their evolution has been limited by the lack of a comprehensive phylogenetic hypothesis of scorpion relationships grounded in modern, genome-scale datasets. Disagreements over scorpion higher-level systematics have also incurred challenges to previous interpretations of venom families as ancestral or derived. To redress these gaps, we assessed the phylogenomic relationships of scorpions using the most comprehensive taxonomic sampling to date.

View Article and Find Full Text PDF

To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, , of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research on scorpion venom glands has advanced our understanding of the variety of venom components through high-throughput transcriptomic and proteomic analyses.
  • This study specifically focuses on the Paravaejovis schwenkmeyeri species, revealing 138 transcripts that may correspond to known venom proteins, and a fingerprint analysis of 212 soluble venom components, showing most proteins range between 1500 to 3000 Da.
  • Additionally, techniques like LC-MS/MS confirmed 27 identified peptide fragments, while enzymatic assays identified key enzymes, enhancing knowledge of venom diversity in lesser-studied non-buthid scorpions.
View Article and Find Full Text PDF

Transcriptomic and genomic analyses have illuminated the diversity of venoms in three of the four venomous arachnid orders (scorpions, spiders, and ticks). To date, no venom gland transcriptome analysis has been available for pseudoscorpions, the fourth venomous arachnid lineage. To redress this gap, we sequenced an mRNA library generated from the venom glands of the species (Garypidae).

View Article and Find Full Text PDF

The increment in the number of scorpion envenoming cases in Mexico is mainly associated to the rapid growth of the urban areas, and consequently, to the invasion of natural habitats of these arachnids. On the other hand, there is a great diversity of scorpion species, so it is indispensable to identify those of medical importance, which we now know are many more than the 7-8 previously reported as dangerous to humans. Because different LD values have been reported for the venom of the same species, probably due to variations in the experimental conditions used, in this work we determined the LD values for the venoms of 13 different species of scorpions using simple but systematic procedures.

View Article and Find Full Text PDF

The soluble venom from the Mexican scorpion Megacormus gertschi of the family Euscorpiidae was obtained and its biological effects were tested in several animal models. This venom is not toxic to mice at doses of 100 μg per 20 g of mouse weight, while being lethal to arthropods (insects and crustaceans), at doses of 20 μg (for crickets) and 100 μg (for shrimps) per animal. Samples of the venom were separated by high performance liquid chromatography and circa 80 distinct chromatographic fractions were obtained from which 67 components have had their molecular weights determined by mass spectrometry analysis.

View Article and Find Full Text PDF

Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species .

View Article and Find Full Text PDF